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1 Specifications
In this section, we introduce HQC, an efficient encryption scheme based on coding the-

ory. HQC stands for Hamming Quasi-Cyclic. This proposal has been published in IEEE
Transactions on Information Theory [1]. Many notations, definitions and properties are
very similar to [13]. We nevertheless include them in this proposal for completeness.

HQC is a code-based public key cryptosystem with several desirable properties:

• It is proved IND-CPA assuming the hardness of (a decisional version of) the Syndrome
Decoding on structured codes. By construction, HQC perfectly fits the recent KEM-
DEM transformation of [24], and allows to get an hybrid encryption scheme with
strong security guarantees (IND-CCA2) and good efficiency,

• In contrast with most code-based cryptosystems, the assumption that the family of
codes being used is indistinguishable among random codes is no longer required, and

• It features a decryption failure probability analysis.

Organization of the Specifications. This section is organized as follows: we provide
the required background in Sec. 1.1, we make some recalls on encryption and security in
Sec. 1.2 then present our proposal in Sec. 1.3. An analysis of the decryption failure rate
is proposed in Sec. 1.4. Details about codes being used are provided in Sec. 1.5, together
with a specific analysis for these codes. Finally, concrete sets of parameters are provided in
Sec. 1.7.

1.1 Preliminaries

1.1.1 General definitions

Throughout this document, Z denotes the ring of integers and F2 the binary finite field.
Additionally, we denote by ω(·) the Hamming weight of a vector i.e. the number of its
non-zero coordinates, and by Snw (F2) the set of words in Fn2 of weight w. Formally:

Snw (F2) = {v ∈ Fn2 , such that ω(v) = w} .

V denotes a vector space of dimension n over F2 for some positive n ∈ Z. Elements of V
can be interchangeably considered as row vectors or polynomials in R = F2[X]/(Xn − 1).
Vectors/Polynomials (resp. matrices) will be represented by lower-case (resp. upper-case)
bold letters. A prime integer n is said primitive if the polynomial Xn − 1/(X − 1) is
irreducible in R.

For u,v ∈ V , we define their product similarly as in R, i.e. uv = w ∈ V with

wk =
∑

i+j≡k mod n

uivj, for k ∈ {0, 1, . . . , n− 1}. (1)
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Our new protocol takes great advantage of the cyclic structure of matrices. In the same
fashion as [1], rot(h) for h ∈ V denotes the circulant matrix whose ith column is the vector
corresponding to hX i. This is captured by the following definition.

Definition 1.1.1 (Circulant Matrix). Let v = (v0, . . . , vn−1) ∈ Fn2 . The circulant matrix
induced by v is defined and denoted as follows:

rot(v) =


v0 vn−1 . . . v1
v1 v0 . . . v2
...

... . . . ...
vn−1 vn−2 . . . v0

 ∈ Fn×n2 (2)

As a consequence, it is easy to see that the product of any two elements u,v ∈ R can
be expressed as a usual vector-matrix (or matrix-vector) product using the rot(·) operator
as

u · v = u× rot(v)> =
(
rot(u)× v>

)>
= v × rot(u)> = v · u. (3)

Coding Theory. We now recall some basic definitions and properties about coding
theory that will be useful to our construction. We mainly focus on general definitions, and
refer the reader to Sec. 1.3 the description of the scheme, and also to [25] for a complete
survey on code-based cryptography.

Definition 1.1.2 (Linear Code). A Linear Code C of length n and dimension k (denoted
[n, k]) is a subspace of R of dimension k. Elements of C are referred to as codewords.

Definition 1.1.3 (Generator Matrix). We say that G ∈ Fk×n2 is a Generator Matrix for
the [n, k] code C if

C =
{
mG, for m ∈ Fk2

}
. (4)

Definition 1.1.4 (Parity-Check Matrix). Given an [n, k] code C, we say that H ∈ F(n−k)×n
2

is a Parity-Check Matrix for C if H is a generator matrix of the dual code C⊥, or more
formally, if

C =
{
v ∈ Fn2 such that Hv> = 0

}
, or equivalently C⊥ =

{
uH, for u ∈ Fn−k2

}
. (5)

Definition 1.1.5 (Syndrome). Let H ∈ F(n−k)×n
2 be a parity-check matrix of some [n, k] code

C, and v ∈ Fn2 be a word. Then the syndrome of v is Hv>, and we have v ∈ C ⇔ Hv> = 0.

Definition 1.1.6 (Minimum Distance). Let C be an [n, k] linear code over R and let ω be
a norm on R. The Minimum Distance of C is

d = min
u,v∈C,u6=v

ω(u− v). (6)
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A code with minimum distance d is capable of decoding arbitrary patterns of up to
δ = bd−1

2
c errors. Code parameters are denoted [n, k, d].

Code-based cryptography usually suffers from huge keys. In order to keep our cryp-
tosystem efficient, we will use the strategy of Gaborit [18] for shortening keys. This results
in Quasi-Cyclic Codes, as defined below.

Definition 1.1.7 (Quasi-Cyclic Codes [35]). View a vector c = (c0, . . . , cs−1) of Fsn2 as s
successive blocks (n-tuples). An [sn, k, d] linear code C is Quasi-Cyclic (QC) of index s if,
for any c = (c0, . . . , cs−1) ∈ C, the vector obtained after applying a simultaneous circular
shift to every block c0, . . . , cs−1 is also a codeword.

More formally, by considering each block ci as a polynomial in R = F2[X]/(Xn−1), the
code C is QC of index s if for any c = (c0, . . . , cs−1) ∈ C it holds that (X ·c0, . . . , X ·cs−1) ∈ C.

Definition 1.1.8 (Systematic Quasi-Cyclic Codes). A systematic Quasi-Cyclic [sn, n] code
of index s and rate 1/s is a quasi-cyclic code with an (s− 1)n× sn parity-check matrix of
the form:

H =


In 0 · · · 0 A0

0 In A1

. . . ...
0 · · · In As−2

 (7)

where A0, . . . ,As−2 are circulant n× n matrices.

Remark 1.1. The definition of systematic quasi-cyclic codes of index s can of course be
generalized to all rates `/s, ` = 1 . . . s − 1, but we shall only use systematic QC-codes of
rates 1/2 and 1/3 and wish to lighten notation with the above definition. In the sequel,
referring to a systematic QC-code will imply by default that it is of rate 1/s. Note that
arbitrary QC-codes are not necessarily equivalent to a systematic QC-code.

1.1.2 Difficult problems for cryptography

In this section we describe difficult problems which can be used for cryptography and discuss
their complexity.

All problems are variants of the decoding problem, which consists of looking for the
closest codeword to a given vector: when dealing with linear codes, it is readily seen that
the decoding problem stays the same when one is given the syndrome of the received vector
rather than the received vector. We therefore speak of Syndrome Decoding (SD).

Definition 1.1.9 (SD Distribution). For positive integers n, k, and w, the SD(n, k, w)

Distribution chooses H
$← F(n−k)×n

2 and x
$← Fn2 such that ω(x) = w, and outputs

(H, σ(x) = Hx>).

Definition 1.1.10 (Search SD Problem). On input (H,y>) ∈ F(n−k)×n
2 × F(n−k)

2 from the
SD distribution, the Syndrome Decoding Problem SD(n, k, w) asks to find x ∈ Fn2 such that
Hx> = y> and ω(x) = w.
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For the Hamming distance the SD problem has been proven NP-complete [4]. This
problem can also be seen as the Learning Parity with Noise (LPN) problem with a fixed
number of samples [2]. For cryptography we also need a decision version of the problem,
which is given in the following definition.

Definition 1.1.11 (Decision SD Problem). On input (H,y>) ∈ F(n−k)×n
2 × F(n−k)

2 , the
Decision SD Problem DSD(n, k, w) asks to decide with non-negligible advantage whether
(H,y>) came from the SD(n, k, w) distribution or the uniform distribution over F(n−k)×n

2 ×
F(n−k)
2 .

As mentioned above, this problem is the problem of decoding random linear codes from
random errors. The random errors are often taken as independent Bernoulli variables acting
independently on vector coordinates, rather than uniformly chosen from the set of errors of
a given weight, but this hardly makes any difference and one model rather than the other is
a question of convenience. The DSD problem has been shown to be polynomially equivalent
to its search version in [2].

Finally, as our cryptosystem will use QC-codes, we explicitly define the problem on
which our cryptosystem will rely. The following definitions describe the DSD problem in
the QC configuration, and are just a combination of Def. 1.1.7 and 1.1.11. Quasi-Cyclic
codes are very useful in cryptography since their compact description allows to decrease
considerably the size of the keys. In particular the case s = 2 corresponds to double
circulant codes with generator matrices of the form (In A) for A a circulant matrix. Such
double circulant codes have been used for almost 10 years in cryptography (cf [19]) and
more recently in [35]. Quasi-cyclic codes of index 3 are also considered in [35].

Definition 1.1.12 (s-QCSD Distribution). For positive integers n, w and s, the s-
QCSD(n,w) Distribution chooses uniformly at random a parity-check matrix H

$←
F(sn−n)×sn
2 of a systematic QC code C of index s and rate 1/s (see Def. 1.1.8) together

with a vector x = (x0, . . . ,xs−1)
$← Fsn2 such that ω(xi) = w, i = 0..s − 1, and outputs

(H,Hx>).

Definition 1.1.13 ((Search) s-QCSD Problem). For positive integers n, w, s, a random
parity check matrix H of a systematic QC code C of index s and y

$← Fsn−n2 , the Search
s-Quasi-Cyclic SD Problem s-QCSD(n,w) asks to find x = (x0, . . . ,xs−1) ∈ Fsn2 such that
ω(xi) = w, i = 0..s− 1, and y = xH>.

It would be somewhat more natural to choose the parity-check matrix H to be made up
of independent uniformly random circulant submatrices, rather than with the special form
required by (7). We choose this distribution so as to make the security reduction to follow
less technical. It is readily seen that, for fixed s, when choosing quasi-cyclic codes with this
more general distribution, one obtains with non-negligible probability, a quasi-cyclic code
that admits a parity-check matrix of the form (7). Therefore requiring quasi-cyclic codes to
be systematic does not hurt the generality of the decoding problem for quasi-cyclic codes.
A similar remark holds for the slightly special form of weight distribution of the vector x.
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Assumption 1. Although there is no general complexity result for quasi-cyclic codes, de-
coding these codes is considered hard by the community. There exist general attacks which
uses the cyclic structure of the code [39] but these attacks have only a very limited impact on
the practical complexity of the problem. The conclusion is that in practice, the best attacks
are the same as those for non-circulant codes up to a small factor.

The problem also has a decision version. In order to avoid trivial distinguishers, an
additional condition on the parity of the syndrome needs to be appended. For b ∈ {0, 1},
we define the finite set Fn2,b = {h ∈ Fn2 s.t. h(1) = b mod 2}, i.e. binary vectors of length
n and parity b. Similarly for matrices, we define the finite sets

Fn×2n2,b =
{
H = (In rot (h)) ∈ Fn×2n2 s.t. h ∈ Fn2,b

}
, and

F2n×3n
2,b1,b2

=

{
H =

(
In 0 rot(h1)
0 In rot(h2)

)
∈ F2n×3n

2 s.t. h1 ∈ Fn2,b1 and h2 ∈ Fn2,b2

}
.

This is pure technicality and does not affect the parameters of our proposal. Meanwhile,
this trick permits to discard attacks such as [21, 30, 31]1. The authors are grateful to Ray
Perlner for pointing out the existence of such a distinguisher.

Definition 1.1.14 (2-QCSD Distribution (with parity)). For positive integers n, w and b,
the 2-QCSD(n,w, b) Distribution with parity chooses uniformly at random a parity-check
matrix H ∈ Fn×2n2,b together with a vector x = (x1,x2)

$← F2n
2 such that ω(x1) = ω(x2) = w,

and outputs (H,Hx>).

Definition 1.1.15 (Decision 2-QCSD Problem (with parity)). Let h ∈ Fn2,b, H =
(In rot(h)), and b′ = w + b × w mod 2. For y ∈ Fn2,b′, the Decision 2-Quasi-Cyclic SD
Problem with parity 2-DQCSD(n,w, b) asks to decide with non-negligible advantage whether
(H,y) came from the 2-QCSD(n,w, b) distribution with parity or the uniform distribution
over Fn×2n2,b × Fn2,b′.

In order to fully explicit the problems upon which HQC relies, we also define the 3-
DQCSD problem with parity. Following Def. 1.1.8, the s-DQCSD problem with parity can
be easily generalized to higher s ≥ 3, but we avoid such a description for the sake of clarity.

Definition 1.1.16 (3-QCSD Distribution (with parity)). For positive integers n, w, b1
and b2, the 3-QCSD(n,w, b1, b2) Distribution with parity chooses uniformly at random a
parity-check matrix H ∈ F2n×3n

2,b1,b2
together with a vector x = (x1,x2,x3)

$← F3n
2 such that

ω(x1) = ω(x2) = ω(x3) = w, and outputs (H,Hx>).
1The authors chose to use a parity version of the DQCSD problem rather than a variable weight version

as suggested in [31] for efficiency issues.
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Definition 1.1.17 (Decision 3-QCSD Problem (with parity)). Let h1 ∈ Fn2,b1 ,h2 ∈ Fn2,b2,

H =

(
In 0 rot(h1)
0 In rot(h2)

)
, b′1 = w + b1 × w mod 2 and b′2 = w + b2 × w mod 2.

For (y1,y2) ∈ Fn2,b′1 × Fn2,b′2, the Decision 3-Quasi-Cyclic SD Problem with parity 3-
DQCSD(n,w, b1, b2) asks to decide with non-negligible advantage whether (H, (y1,y2)) came
from the 3-QCSD(n,w, b1, b2) distribution with parity or the uniform distribution over
F2n×3n
2,b1,b2

×
(
Fn2,b′1 × Fn2,b′2

)
.

As for the ring-LPN problem, there is no known reduction from the search version of
s-QCSD problem to its decision version. The proof of [2] cannot be directly adapted in the
quasi-cyclic case, however the best known attacks on the decision version of the s-QCSD
problem remain the direct attacks on the search version.

The IND-CPA security of HQC essentially relies on the hardness of the 2 and 3-DQCSD
problems described above (Def. 1.1.15 and 1.1.17). However, in order to thwart structural
attacks, we need to work with a code of primitive prime length n, so that Xn − 1 has only
two irreducible factors mod q. But for parameters and codes considered in the proposed
instantiation (BCH codes tensored with a repetition code), the encoding of a message m
has size n1n2, which is obviously not prime. Therefore we use as ambient length n =
next_primitive_prime (n1n2), the first primitive prime greater than n1n2, and truncate the
last ` = n − n1n2 bits wherever needed. This results in a slightly modified version of the
DQCSD problem, that we will argue to be at least as hard as the original ones. We first
define this truncated version in its primal version.

Definition 1.1.18 (Decoding with ` erasures). Let C[n, k] be a QC-code generated by G

and c = mG + e for some random e
$← Snw(F2). Consider the matrix G′ ∈ Fk×n′2 (resp.

vector e′ ∈ Fn′2 ) obtained by removing the last ` = n− n′ ≥ 1 columns from G (resp. e).
The Decoding with ` erasures problem asks to recover m ∈ Fk2 from c′ = mG′ + e′ ∈ Fn′2

and G′ ∈ Fk×n′2 .

Conceptually speaking, the above problem asks to recover the encoded message, given
less information. It then becomes obvious that Decoding with erasures is harder than with
full knowledge of the encoding. Assume that A can solve the decoding problem with `
erasures, and let (c,G) be an instance of the decoding problem with no erasure. One starts
by removing the last ` columns from c and G, then uses A to recover m ∈ Fk2. Since the
dimension is unchanged in both problems, m is also solution to the decoding problem with
no erasure, which confirms the hardness statement.

As the decoding problem and the syndrome decoding problem are equivalent, the argu-
ment previously exposed applies. Therefore the corresponding 2 and 3-DQCSD problems
with ` = n−n1n2 erasures obtained to avoid structural attacks are at least as hard as those
defined in Def. 1.1.15 and 1.1.17 above. (In Sec. 4, n = next_primitive_prime (n1n2) >
n1n2).

9



1.2 Encryption and security

Encryption Scheme. An encryption scheme is a tuple of four polynomial time algorithms
(Setup,KeyGen,Encrypt,Decrypt):

• Setup(1λ), where λ is the security parameter, generates the global parameters param
of the scheme;

• KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private)
decryption key sk;

• Encrypt(pk,m, θ) outputs a ciphertext c, on the message m, under the encryption key
pk, with the randomness θ. We also use Encrypt(pk,m) for the sake of clarity;

• Decrypt(sk, c) outputs the plaintext m, encrypted in the ciphertext c or ⊥.

Such an encryption scheme has to satisfy both Correctness and Indistinguishability under
Chosen Plaintext Attack (IND-CPA) security properties.

Correctness: For every λ, every param← Setup(1λ), every pair of keys (pk, sk) generated
by KeyGen, every message m, we should have Pr[Decrypt(sk,Encrypt(pk,m, θ)) = m] =
1 − negl(λ) for negl(·) a negligible function, where the probability is taken over varying
randomness θ.

IND-CPA [22]: This notion formalized by the game depicted in Fig. 1, states that an
adversary should not be able to efficiently guess which plaintext has been encrypted even
if he knows it is one among two plaintexts of his choice.

Expind−b
E,A (λ)

1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param)
3. (m0,m1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,mb, θ)
5. b′ ← A(GUESS : c∗)
6. RETURN b′

Figure 1: Game for the IND-CPA security of an asymmetric encryption scheme.

In the following, we denote by |A| the running time of an adversary A. The global
advantage for polynomial time adversaries running in time less than t is:

Advind
E (λ, t) = max

|A|≤t
Advind

E,A(λ), (8)

where Advind
E,A(λ) is the advantage the adversary A has in winning game Expind−b

E,A (λ):

Advind
E,A(λ) =

∣∣Pr[Expind−1
E,A (λ) = 1]− Pr[Expind−0

E,A (λ) = 1]
∣∣ . (9)
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IND-CPA, IND-CCA2 and Hybrid Encryption. Note that the standard (highest)
security requirement for a public key cryptosystem is indistinguishability against adaptive
chosen-ciphertext attacks (IND-CCA2), and not just IND-CPA. The main difference is that
for IND-CCA2, indistinguishability must hold even if the attacker is given a decryption
oracle first when running the FIND algorithm and also when running the GUESS algorithm
(but cannot query the oracle on the challenge ciphertext c∗). We do not present the asso-
ciated formal game and definition as an existing (and inexpensive) transformation can be
used [24] for our scheme to pass from IND-CPA to IND-CCA2. Various generic techniques
transforming an IND-CPA scheme into an IND-CCA2 scheme are known [16, 17, 36, 12]
but cannot be applied to our scheme due to potential decryption errors.

In [24] Hofheinz et al. present a generic transformation that takes into account de-
cryption errors and can be applied directly to our scheme. Roughly, their construction
provides a way to convert a guarantee against passive adversaries into indistinguishability
against active ones by turning a public key cryptosystem into a KEM-DEM. The tightness
(the quality factor) of the reduction depends on the ciphertext distribution. Regarding
our scheme, random words only have a negligible (in the security parameter) probability of
being valid ciphertexts. In other words, the γ-spreadness factor of [24] is small enough so
that there is no loss between the IND-CPA security of our public key cryptosystem and the
IND-CCA2 security of the KEM-DEM version presented in Fig. 3.

The security reduction is tight in the random oracle model and does not require any
supplemental property from our scheme as we have the IND-CPA property (instead of just
a weaker property called One-Wayness). Let us denote by Encrypt(pk,m, θ) the encryption
function defined in Fig. 2 that uses randomness θ to generate uniformly random values
r1, r2, and e. The idea of [24] transformation is to de-randomize the encryption function
Encrypt(pk,m, θ) by using a hash function G and do a deterministic encryption of m by
calling c = Encrypt(pk,m,G(m)). The ciphertext is sent together with a hash K = H(c,m)
that ties the ciphertext to the plaintext. The receiver then decrypts c into m, checks
the hash value, and uses again the deterministic encryption to check that c is indeed the
ciphertext associated to m.

As the reduction is tight we do not need to change our parameters when we pass from
IND-CPA to IND-CCA2. From a computational point of view, the overhead for the sender
is two hash calls and for the receiver it is two hash calls and an encrypt call. From a
communication point of view the overhead is the bitsize of a hash (or two if the reduction
must hold in the Quantum Random Oracle Model, see [24] for more details).

Note that there is currently a lot of research activity around generic transformations
from IND-CPA (or OW-CPA) PKE to IND-CCA2 KEM [24, 38, 26, 8, 27] with very few
feedback. While it is possible to use state-of-the-art conversions to make HQC IND-CCA2
secure in the QROM with limited computational and bandwidth overhead (using the FO 6⊥
transform in [26] for instance), we chose to keep the presentation of HQC using [24] in order
to avoid moving target for NIST evaluation. Any other conversion can be implemented
simply.
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1.3 Presentation of the scheme

In this section, we describe our proposal: HQC. We begin with the PKE version, then
describe the transformation of [24] to obtain a KEM-DEM that achieves IND-CCA2. Pa-
rameter sets can be found in Sec. 1.7.

1.3.1 Public key encryption version (HQC.PKE)

Presentation of the scheme. HQC uses two types of codes: a decodable [n, k] code C,
generated by G ∈ Fk×n2 and which can correct at least δ errors via an efficient algorithm
C.Decode(·); and a random double-circulant [2n, n] code, of parity-check matrix (1,h). The
four polynomial-time algorithms constituting our scheme are depicted in Fig. 2.

• Setup(1λ): generates and outputs the global parameters param= (n, k, δ, w, wr, we).

• KeyGen(param): samples h
$← R, the generator matrix G ∈ Fk×n2 of C, sk =

(x,y)
$← R2 such that ω(x) = ω(y) = w, sets pk = (h, s = x + h · y), and returns

(pk, sk).

• Encrypt(pk,m): generates e
$← R, r = (r1, r2)

$← R2 such that ω(e) = we and
ω(r1) = ω(r2) = wr, sets u = r1+h·r2 and v = mG+s · r2+e, returns c = (u,v).

• Decrypt(sk, c): returns C.Decode(v − u · y).

Figure 2: Description of our proposal HQC.PKE.

Notice that the generator matrix G of the code C is publicly known, so the security of
the scheme and the ability to decrypt do not rely on the knowledge of the error correcting
code C being used.

Also notice that the code C is instantiated using tensor codes: BCH and repetition
codes (see Section 1.5.1 for more details). The BCH codes are defined implicitly using their
generator polynomials. In fact, as explained in Section 1.5.2, by exploiting the algebraic
properties of BCH codes, one can use the generator polynomial to compute code words
without computing the generator matrix explicitly. In order to keep the description of the
scheme simple, the matrix form of the codes is used. Furthermore, we will have G ∈ Fn1n2

2

and h ∈ Fn2 , with n the smallest primitive prime greater than n1n2. All computations are
made in the ambient space Fn2 and the remaining ` = n − n1n2 bits are truncated where
useless.

In particular, the ciphertext will be
(
u, v̄(`)

)
, where v̄(`) denotes the ` first coordinates

(bits) of v. For sake of readability, we keep the notation v even for the truncated vector,
and explicitly mention the length of the vectors.

Correctness. The correctness of our encryption scheme clearly relies on the decoding
capability of the code C. Specifically, assuming C.Decode correctly decodes v − u · y, we
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have:
Decrypt (sk,Encrypt (pk,m)) = m. (10)

And C.Decode correctly decodes v − u · y whenever

ω (s · r2 − u · y + e) ≤ δ (11)
ω ((x + h · y) · r2 − (r1 + h · r2) · y + e) ≤ δ (12)
ω (x · r2 − r1 · y + e) ≤ δ (13)

In order to provide an upper bound on the decryption failure probability, an analysis of the
distribution of the error vector e′ = x · r2 − r1 · y + e is provided in Sec. 1.4.

1.3.2 KEM/DEM version (HQC.KEM)

Let E be an instance of the HQC cryptosystem as described above. Let G, H, and K be
hash functions, typically SHA512 as advised by NIST2. The KEM-DEM version of the HQC
cryptosystem is defined as follows:

• Setup(1λ): as before, except that k will be the length of the symmetric key being
exchanged, typically k = 256.

• KeyGen(param): exactly as before.

• Encapsulate(pk): generate m
$← Fk2 (this will serve as a seed to derive the shared

key). Derive the randomness θ ← G(m). Generate the ciphertext c ← (u,v) =
E .Encrypt(pk,m, θ), and derive the symmetric key K ← K(m, c). Let d← H(m),
and send (c,d).

• Decapsulate(sk, c,d): Decrypt m′ ← E .Decrypt(sk, c), compute θ′ ← G(m′), and
(re-)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′). If c 6= c′ or d 6= H(m′) then
abort. Otherwise, derive the shared key K ← K(m, c).

Figure 3: Description of our proposal HQC.KEM.

According to [24], the KEM-DEM version of HQC is IND-CCA2. More details regarding
the tightness of the reduction are provided at the end of Sec. 1.7.

Security concerns and implementation details. Notice that while NIST only re-
commends SHA512 as a hash function (or TupleHash256 for hardware efficiency purposes),
the transformation of [24] would be dangerous – at least in our setting – if one sets G = H.
Indeed, publishing the randomness θ = G(m) = H(m) = d used to generate r1, r2, and e
would allow an eavesdropper to retrieve m from mG + sr2 + e and hence, the seed for the
shared secret key.

We therefore suggest to use a pseudo-random function for G, such as an AES-based seed
expander, and SHA512 for H.

2See Dustin Moody’s mail entitled “new FAQ question” on PQC-forum (20/07/2017 – 12:58 CET)
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1.3.3 A hybrid encryption scheme (HQC.HE)

While NIST claimed that they will be using generic transformations to convert any IND-
CCA2 KEM into an IND-CCA2 PKE, no detail on these conversions have been provided.
We therefore refer to HQC.HE to designate the PKE scheme resulting from applying a
generic conversion to HQC.KEM.

1.4 Analysis of the error vector distribution for Hamming distance

The aim of this section is to determine the probability that the condition in Eq. (13) holds.
In order to do so, we study the error distribution of the error vector e′ = x · r2− r1 · y + e.

The vectors x,y, r1, r2, e have been taken uniformly random and independently chosen
among vectors of weight w, wr or we. This distribution can be closely approximated by
a binomial distribution B, where a vector consists of n Bernoulli variables of parameter
p = w/n (or pr = wr/n and pe = we/n respectively). In other words, Snw(F2) is close to
B (n,w/n), similarly for wr and we. To simplify the analysis we shall assume this model
rather than the constant weight uniform model. Both models are very close, and our
cryptographic protocols work just as well in both settings.

We first evaluate the distributions of the products x · r2 and r1 · y.
Proposition 1.4.1. Let x = (X0, . . . , Xn−1) (resp. r = (R0, . . . , Rn−1)) be a random
vector where the Xi (resp. Ri) are independent Bernoulli variables of parameter p (resp.
pr), P (Xi = 1) = p and P (Ri = 1) = pr. Assuming x and r are independent, and denoting
z = x · r = (Z0, . . . , Zn−1) as defined in Eq. (1), we have:{

Pr[Zk = 1] = 1
2
− 1

2
(1− 2ppr)

n ,

Pr[Zk = 0] = 1
2

+ 1
2

(1− 2ppr)
n .

(14)

Proof. We have
Zk =

∑
i+j=k mod n

XiRj mod 2. (15)

Every term XiRj is the product of two independent Bernoulli variables of parameter re-
spectively p and pr, and is therefore a Bernoulli variable of parameter p× pr. The variable
Zk is the sum modulo 2 of n such products, which are all independent since every variable
Xi (for 0 ≤ i ≤ n − 1) is involved exactly once in (15), and similarly every variable Rj

is involved once in (15). Therefore Zk is the sum modulo 2 of n independent Bernoulli
variables of parameter p× pr, and we have

Pr[Zk = 1] =
∑

0≤i≤n,i odd

(
n

i

)
(ppr)

i (1− ppr)n−i

which, using the equations:∑
0≤i≤n,
i odd

(
n

i

)
aibn−i =

(a+ b)n − (a− b)n

2
, and

∑
0≤i≤n,
i even

(
n

i

)
aibn−i =

(a+ b)n + (a− b)n

2
(16)

14



with a = ppr and b = 1− ppr, simplifies into the claimed result.

Let us denote by p̃ = p̃(n,w) = Pr[Zk = 1] from Eq. (14). Let x,y (resp. r1, r2)
be independent random vectors whose coordinates are independently Bernoulli distributed
with parameter p (resp. pr). Then the k-th coordinates of x · r2 and of r1 ·y are independent
and Bernoulli distributed with parameter p̃. Therefore their modulo 2 sum t = x · r2−r1 ·y
is Bernoulli distributed with {

Pr[tk = 1] = 2p̃(1− p̃),
Pr[tk = 0] = (1− p̃)2 + p̃2.

(17)

Finally, by adding the term e to t, we obtain the distribution of the coordinates of the
error vector e′ = x · r2 − r1 · y + e. Since the coordinates of e are Bernoulli of parameter
pe and those of t are Bernoulli distributed as (17) and independent from e, we obtain the
following proposition.

Proposition 1.4.2. Let x,y ∼ B
(
n, w

n

)
, r1, r2 ∼ B

(
n, wr

n

)
and e ∼ B

(
n, we

n

)
, and let

e′ = x · r2 − r1 · y + e. Then{
Pr[e′k = 1] = 2p̃(1− p̃)(1− we

n
) + ((1− p̃)2 + p̃2) we

n
,

Pr[e′k = 0] = ((1− p̃)2 + p̃2) (1− we

n
) + 2p̃(1− p̃)we

n
.

(18)

Proposition 1.4.2 gives us the probability that a coordinate of the error vector e′ is
1. In our simulations, which occur in the regime w = α

√
n with constant α, we make

the simplifying assumption that the coordinates of e′ are independent, meaning that the
weight of e′ follows a binomial distribution of parameter p?, where p? is defined as in Eq.
(18): p? = 2p̃(1 − p̃)(1 − we

n
) + ((1− p̃)2 + p̃2) we

n
. This approximation will give us, for

0 ≤ d ≤ min(2× w × wr + we, n),

Pr[ω(e′) = d] =

(
n

d

)
(p?)d(1− p?)(n−d). (19)

In practice, the results obtained by simulation on the decryption failure are very coherent
with this assumption.

1.5 Decoding codes with low rates and good decoding properties

The previous section allowed us to determine the distribution of the error vector e in the
configuration where a simple linear code is used. Now the decryption part corresponds
to decoding the error described in the previous section. Any decodable code can be used
at this point, depending on the considered application: clearly small dimension codes will
allow better decoding, but at the cost of a lower encryption rate. The particular case that
we consider corresponds typically to the case of key exchange or authentication, where only
a small amount of data needs to be encrypted (typically 80, 128 or 256 bits, a symmetric
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secret key size). We therefore need codes with low rates which are able to correct many
errors. Again, a tradeoff is necessary between efficiently decodable codes but with a high
Decoding Failure Rate (DFR) and less efficiently decodable codes but with a smaller DFR.

An example of such a family of codes with good decoding properties, meaning a simple
decoding algorithm which can be analyzed, is given by Tensor Product Codes, which are
used for biometry [9], where the same type of issue appears. More specifically, we will
consider a special simple case of Tensor Product Codes (BCH codes and repetition codes),
for which a precise analysis of the decryption failure can be obtained in the Hamming
distance case.

1.5.1 Tensor product codes

Definition 1.5.1 (Tensor Product Code). Let C1 (resp. C2) be a [n1, k1, d1] (resp.
[n2, k2, d2]) linear code over F2. The Tensor Product Code of C1 and C2 denoted C1 ⊗ C2 is
defined as the set of all n2×n1 matrices whose rows are codewords of C1 and whose columns
are codewords of C2.

More formally, if C1 (resp. C2) is generated by G1 (resp. G2), then

C1 ⊗ C2 =
{
G>2 XG1 for X ∈ Fk2×k12

}
(20)

Remark 1.2. Using the notation of the above definition, the tensor product of two linear
codes is a [n1n2, k1k2, d1d2] linear code.

Specifying the tensor product code. Even if tensor product codes seem well-suited
for our purpose, an analysis similar to the one in Sec. 1.4 becomes much more complicated.
Therefore, in order to provide strong guarantees on the decryption failure probability for
our cryptosystem, we chose to restrict ourselves to a tensor product code C = C1 ⊗ C2,
where C1 is a BCH(n1, k1, δ1) code of length n1, dimension k1, and correcting capability δ1
(i.e. it can correct any pattern of δ1 errors), and C2 is the repetition code of length n2 and
dimension 1, denoted 1n2 . (Notice that 1n2 can decode up to δ2 = bn2−1

2
c.) Subsequently,

the analysis becomes possible and remains accurate but the negative counterpart is that
there probably are some other tensor product codes achieving better efficiency (or smaller
key sizes).

In HQC, a message m ∈ Fk12 is first encoded into m1 ∈ Fn1
2 with a BCH(n1, k1 = k, δ1)

code, then each coordinate m1,i of m1 is re-encoded into m̃1,i ∈ Fn2
2 with a repetition code

1n2 . We denote n1n2 the length of the tensor product code3 (its dimension is k = k1 × 1),
and by m̃ the resulting encoded vector, i.e. m̃ = (m̃1,1, . . . , m̃1,n1) ∈ Fn1n2

2 .
The efficient algorithm used for the repetition code is the majority decoding. Formally:

1n2 .Decode(m̃1,j) =

{
1 if

∑n2−1
i=0 m̃1,j,i ≥ dn2+1

2
e,

0 otherwise. (21)

The decoding of BCH codes is discussed in the next section.
3In practice, the length is the smallest primitive prime n greater than n1n2 to avoid algebraic attacks.

16



1.5.2 BCH codes

For any positive integers m ≥ 3 and t ≤ 2m−1, there exists a binary BCH code with the
following parameters [29]:

• Block length n = 2m − 1

• Number of parity-check digits n−k ≤ mδ, with δ, the correcting capacity of the code
and k the number of information bits

• Minimum distance dmin ≥ 2δ + 1

We denote this code by BCH[n, k, δ]. Let α be a primitive element in F2m , the generator
polynomial g(x) of the BCH[n, k, δ] code is given by:

g(x) = LCM {φ1(x), φ2(x), · · · , φ2δ(x)}

with φi(x) being the minimal polynomial of αi (refer to [29] for more details on generator
polynomial).

Depending on HQC parameters, we construct shortened BCH (BCH-S1 and S2) codes
such that k = 256 from the two following BCH codes BCH-1 and BCH-2 (codes from [29]).

Code n k δ

BCH-1 1023 513 57
BCH-2 1023 483 60
BCH-S1 766 256 57
BCH-S2 796 256 60

Table 1: Original and shortened BCH codes.

The shortened codes are obtained by subtracting 257 from the parameters n and k of
the code BCH-1 and subtracting 227 from the parameters n and k of the code BCH-2.
Notice that shortening the BCH code does not affect the correcting capacity, thus we have
the following shortened BCH codes :

• BCH-S1[766 = 1023− 257, 256 = 513− 257, 57]

• BCH-S2[796 = 1023− 227, 256 = 483− 227, 60]

In our case, we will be working in F2m with m = 10. To do so, we use the primitive
polynomial 1 +X3 +X10 of degree 10 to build this field (polynomial from [29]). We denote
by g1(x) and g2(x) the generator polynomials of BCH-S1 and BCH-S2 respectively, which
are equal to the generator polynomials of BCH codes BCH-1 and BCH-2 respectively. We
precomputed the generator polynomials g1(x) and g2(x) of the code BCH-S1 and BCH-
S2 and we included their hexadecimal formats in the file parameters.h. One can use the
functions provided in the file bch.h to reconstruct the generator polynomials for both codes.
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Generator polynomial of BCH-1. g1(x) = 1 +x+x6 +x9 +x10 +x12 +x13 +x15 +x17 +

x18+x21+x24+x25+x26+x27+x28+x29+x32+x33+x35+x36+x37+x38+x40+x41+x42+
x43+x45+x49+x52+x53+x54+x56+x57+x59+x61+x62+x63+x65+x67+x70+x75+x76+
x77 +x78 +x80 +x81 +x82 +x83 +x84 +x89 +x92 +x95 +x96 +x97 +x101 +x102 +x105 +x107 +
x111 + x116 + x120 + x122 + x123 + x128 + x129 + x132 + x133 + x135 + x137 + x139 + x141 + x142 +
x143 + x144 + x146 + x149 + x150 + x152 + x154 + x155 + x158 + x159 + x161 + x162 + x163 + x164 +
x165+x167+x169+x170+x171+x173+x177+x178+x180+x181+x182+x183+x185+x186+x187+
x188+x193+x200+x206+x207+x208+x209+x212+x213+x215+x220+x223+x226+x228+x231+
x232+x234+x236+x237+x238+x239+x240+x242+x243+x245+x247+x248+x249+x250+x251+
x252+x256+x258+x259+x260+x261+x262+x263+x265+x267+x269+x270+x274+x275+x278+
x279+x281+x282+x283+x284+x285+x286+x287+x291+x292+x293+x294+x296+x300+x303+
x304+x306+x307+x310+x312+x313+x315+x317+x319+x320+x326+x327+x328+x329+x330+
x331+x332+x333+x334+x335+x337+x338+x340+x342+x343+x344+x345+x346+x347+x348+
x350+x351+x353+x354+x358+x361+x362+x363+x364+x365+x367+x369+x374+x376+x377+
x378+x379+x381+x387+x390+x392+x393+x394+x395+x396+x403+x404+x405+x406+x407+
x409+x412+x415+x416+x418+x427+x428+x432+x433+x434+x437+x438+x442+x443+x445+
x448+x452+x454+x456+x460+x461+x462+x463+x464+x468+x471+x472+x474+x475+x478+
x480+x481+x483+x484+x485+x490+x491+x493+x494+x495+x497+x502+x506+x509+x510.

Generator polynomial of BCH-2. g2(x) = 1 +x+x3 +x4 +x6 +x11 +x13 +x15 +x16 +

x17+x18+x19+x20+x22+x23+x25+x26+x27+x28+x29+x32+x35+x37+x38+x40+x43+
x44+x45+x48+x49+x50+x54+x56+x58+x60+x61+x64+x66+x69+x73+x74+x75+x76+
x77 +x78 +x79 +x82 +x83 +x84 +x85 +x87 +x89 +x91 +x92 +x94 +x97 +x99 +x100 +x101 +
x105 + x106 + x107 + x108 + x112 + x114 + x115 + x116 + x117 + x119 + x122 + x123 + x124 + x125 +
x127 + x131 + x134 + x135 + x136 + x137 + x138 + x140 + x144 + x146 + x147 + x151 + x153 + x156 +
x160 + x161 + x163 + x165 + x167 + x168 + x170 + x171 + x174 + x175 + x176 + x179 + x181 + x184 +
x187 + x188 + x190 + x195 + x196 + x201 + x203 + x204 + x206 + x207 + x209 + x213 + x214 + x215 +
x217 + x219 + x220 + x223 + x224 + x226 + x227 + x231 + x233 + x234 + x238 + x245 + x250 + x251 +
x254 + x258 + x259 + x262 + x263 + x264 + x268 + x271 + x272 + x273 + x274 + x280 + x281 + x284 +
x286 + x287 + x288 + x289 + x290 + x291 + x293 + x294 + x295 + x298 + x299 + x302 + x303 + x304 +
x305 + x306 + x311 + x313 + x314 + x315 + x317 + x319 + x324 + x325 + x330 + x334 + x336 + x338 +
x340+x341+x345+x347+x348+x352+x355+x358+x359+x362+x364+x367+x368+x369+x370+
x373+x374+x377+x378+x380+x382+x383+x392+x394+x395+x402+x403+x405+x407+x413+
x414+x415+x417+x419+x420+x422+x423+x424+x425+x427+x428+x429+x431+x432+x434+
x435+x436+x437+x438+x441+x444+x445+x452+x454+x460+x462+x463+x464+x465+x466+
x469+x470+x471+x476+x478+x479+x480+x481+x484+x487+x488+x489+x490+x491+x502+
x504+x506+x507+x509+x512+x514+x515+x521+x522+x523+x524+x526+x529+x534+x540.

1.5.3 Encoding shortened BCH codes

In the following we present the decoding of classical BCH codes which can also be used to
decode shortened BCH codes. We denote by u(x) = u0 + · · · + uk−1x

k−1 the polynomial
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corresponding to the message u = (u0, · · · , uk−1) to be encoded and g(x) the generator
polynomial. We use the systematic form of encoding where the rightmost k elements of the
code word polynomial are the message bits and the leftmost n− k bits are the parity-check
bits. Following [29], the code word is given by c(x) = b(x) + xn−ku(x), where b(x) is the
reminder of the division of the polynomial xn−ku(x) by g(x). In consequence, the encoding
in systematic form consists of three steps :

1. Multiply the message u(x) by xn−k.

2. Compute the remainder b(x) by dividing xn−ku(x) by the generator polynomial g(x).

3. Combine b(x) and xn−ku(x) to obtain the code polynomial c(x) = b(x) + xn−ku(x).

1.5.4 Decoding shortened BCH codes

As for encoding, the decoding of classical BCH codes can be used to decode shortened BCH
codes. For sake of simplicity, we will detail the process of decoding classical BCH codes.
Following [29], consider the BCH code defined by [n, k, δ], with n = 2m−1 (m ≥ 0 of positive
integer) and suppose that a codeword v(x) = v0 + v1x+ · · ·+ vn−1x

n−1 is transmitted. We
denote r(x) = r0 + r1x + · · · + rn−1x

n−1 the received word, potentially altered by some
errors.

We denote the error polynomial e(x) = e0 + e1x+ · · ·+ en−1x
n−1, meaning that there is

an error in position i whenever ei = 1. Hence, r(x) = v(x) + e(x).
We define the set of syndromes S1, S2, · · · , S2δ as Si = r(αi), with α being a primitive

element in F2m . We have that r(αi) = e(αi), since v(αi) = 0 (v is a codeword). Suppose
that e(x) has t errors at locations j1, · · · , jt, i.e. e(x) = xj1 + xj2 + · · ·+ xjt . We obtain the
following set of equations, where αj1 , αj2 , · · · , αjt are unknown:

S1 = αj1 + αj2 + · · ·+ αjt

S2 = (αj1)2 + (αj2)2 + · · ·+ (αjt)2

S3 = (αj1)3 + (αj2)3 + · · ·+ (αjt)3

...
S2δ = (αj1)2δ + (αj2)2δ + · · ·+ (αjt)2δ

The goal of a BCH decoding algorithm is to solve this system of equations. We define
the error location numbers by βi = αji , which indicate the location of the errors. The
equations above, can be expressed as follows:

S1 = β1 + β2 + · · ·+ βt
S2 = β2

1 + β2
2 + · · ·+ β2

t

S3 = β3
1 + β3

2 + · · ·+ β3
t

...
S2δ = β2δ

1 + β2δ
2 + · · ·+ β2δ

t
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we define the error location polynomial as:

σ(x) = (1 + β1x)(1 + β2x) · · · (1 + βtx)

= 1 + σ1x+ σ2x
2 + · · ·+ σtx

t

We can see that the roots of σ(x) are β−11 , β−12 , · · · , β−1t which are the inverses of the
error location numbers. By inverting those roots we can construct the error polynomial
e(x).

We can summarize the decoding procedure of a BCH[n, k, δ] code by the following steps:

1. The first step is the computation of the 2δ syndromes using the received polynomial.
In our implementation, we compute these syndromes by the transpose of the additive
Fast Fourier Transform (FFT) as suggested in [6].

2. The second step is the computation of the error-location polynomial σ(x) from the
2δ syndromes computed in the first step. Here we use Berlekamp’s simplified algo-
rithm [28].

3. The third step is to find the error-location numbers by calculating the roots of the
polynomial σ(x) and returning their inverses. We implement this step with an additive
Fast Fourier Transform algorithm from [20].

4. The fourth step is the correction of errors in the received polynomial.

Remark 1.3. As mentioned before, in our implementation, we deal with shortened BCH
codes. We notice that we will be using the same decoding procedure described above.

Step 1. Syndrome computation. The following function computes the syndromes.

void compute_syndromes(uint16_t* syndromes, const uint8_t* rcv); // bch.h

The syndromes are computed by evaluating the received polynomial stored in the vector
rcv at the 2× PARAM_DELTA consecutive roots of the generator polynomial αi for i =
1, 2, · · · , 2 ∗ PARAM_DELTA. Let us denote by r(x) the polynomial in the vector v, thus the
syndromes are

r(α), r(α2), · · · , r(α2×PARAM_DELTA)

and they are stored as F2m elements in the array syndromes. Computation is done via
additive FFT as suggested in [6].

Step 2. Computing the Error-Location Polynomial. The following function com-
putes the error-location polynomial σ(x) as defined above and stores it in the vector sigma.

size_t compute_elp(uint16_t* sigma, const uint16_t* syndromes); // bch.h

This function implements the simplified Berlekamp’s algorithm for finding the error-
location polynomial for binary BCH codes given by Joiner and Komo in [28].
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Step 3. Finding the Error-Location Numbers. The following function computes the
error polynomial by finding the roots of the error-location polynomial and inversing them.

void compute_roots(uint8_t* err, uint16_t* sigma, size_t deg_sigma); // bch.h

To find the roots of the polynomial σ(x) stored in the array sigma, we have to evaluate
σ(x) in all the elements of the Galois Field. Let α be the generator of the field then we
have to check for j = 1, 2, ... if σ(αj) = 0. We do this using additive FFT by [20], which
outputs the subset sums of a basis of the Galois field. From these evaluations, we build the
error polynomial e(x) by calling the subroutine

void fft_retrieve_bch_error_poly(uint8_t* err, const uint16_t* w); // fft.h

which derives from each null evaluation the corresponding location number. A simple xor
of this error polynomial with the received polynomial yields the codeword.

1.5.5 Decryption Failure Probability

With a tensor product code C = BCH(n1, k1, δ)⊗1n2 as defined above, a decryption failure
occurs whenever the decoding algorithm of the BCH code does not succeed in correcting
errors that would have arisen after wrong decodings by the repetition code. Therefore, the
analysis of the decryption failure probability is again split into three steps: evaluating the
probability that the repetition code does not decode correctly, the conditional probability
of a wrong decoding for the BCH code given an error weight and finally, the decryption
failure probability using the law of total probability.

Step 1. We now focus on the probability that an error occurs while decoding the repetition
code. As shown in Sec. 1.4, the probability for a coordinate of e′ = x · r2−r1 ·y+e to be 1 is
p? (see Eq. (18)). As mentioned above, 1n2 can decode up to δ2 = bn2−1

2
c errors. Therefore,

assuming that the error vector e′ has weight γ (which occurs with the probability given in
Eq. (19)), the probability of getting a decoding error on a single block of the repetition
code 1n2 is hence given by:

p̄γ = p̄γ(n1, n2) =

n2∑
i=bn2−1

2
c+1

(
n2

i

)(
γ

n1n2

)i(
1− γ

n1n2

)n2−i

. (22)

Step 2. We now focus on the BCH(n1, k1, δ1) code, and recall that it can correct any
pattern of δ1 errors. Now the probability P that the BCH(n1, k1, δ1) code fails to decode
correctly the encoded message m1 back to m is given by the probability that an error
occurred on at least δ1 + 1 blocks of the repetition code. Therefore, we have

P = P(δ1, n1, n2, γ) =

n1∑
i=δ1+1

(
n1

i

)
(p̄γ)

i (1− p̄γ)n1−i. (23)
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Step 3. Finally, using the law of total probability, we have that the decryption failure
probability is given by the sum over all the possible weights of the probability that the
error has this specific weight times the probability of a decoding error for this weight. This
is captured in the following theorem, whose proof is a straightforward consequence of the
formulae of Sec. 1.4 and 1.5.1.

Theorem 1.4. Let C = BCH(n1, k1, δ)⊗ 1n2, (pk, sk)← KeyGen, and m
$← Fk12 , then with

the notations above, the decryption failure probability is

pfail = Pr [Decrypt (sk,Encrypt (pk,m)) 6= m] (24)

=

min(2×w×wr+we,n1n2)∑
γ=0

Pr[ω(e′) = γ]P(δ1, n1, n2, γ) (25)

Eq. (25) gives a theoretical approximation of the decryption failure rate. The parameters
presented in Tab. 2 were obtained using this formula. Experimental evidences supporting
the validity of the assumptions made to obtained this formula are provided in Fig. 4.

1.6 Representation of objects

Vectors. Elements of Fn2 , F
n1n2
2 and Fk2 are represented as binary arrays.

Seeds. The considered seedexpander has been provided by the NIST. It is initialized with a
byte string of length 40 of which 32 are used as the seed and 8 are used as the diversifier.
In addition, it is initialized with max_length equal to 232 − 1.

1.6.1 Keys and ciphertext representation

The secret key sk = (x,y) is represented as sk = (seed1) where seed1 is used to generate
x and y. The public key pk = (h, s) is represented as pk = (seed2, s) where seed2 is
used to generate h. The ciphertext c is represented as (u,v,d) where d is generated using
SHA512. The secret key has size 40 bytes, the public key has size 40 + dn/8e bytes and the
ciphertext has size dn/8e+ dn1n2/8e+ 64 bytes.

1.6.2 Randomness and vector generation

Random bytes are generated using the NIST provided randombytes or seedexpander func-
tions. The randombytes function is used to generate seed1 and seed2 as well as m. The
seedexpander function is used to generate θ (using m as seed) as well as x, y (using seed1
as seed), h (using seed2 as seed) and r1, r2, e (using θ as seed).

Random vectors are sampled uniformly from Fk2, Fn2 or from Fn2 with a given Hamming
weight. Sampling from Fk2 and Fn2 is performed by filling the mathematical representation
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Figure 4: Logarithm of theoretical and observed decryption failure rates (DFR). The red
curve corresponding to theoretical DFR was obtained using Eq. (25) while the black curve
corresponding to experimental DFR was obtained by running 105 encryption/decryption
over 103 codes with n1 = 766, k1 = 256, δ1 = 57, w = 67, wr = 77. The parameters have
been selected to make the theoretical DFR sufficiently high to compare it to experiments.
Finally, the curves have been interpolated to the second order on the logarithm of the
probability.

of the vector with random bits. Sampling a vector from Fn2 of a given weight starts by
generating uniformly at random the support using a rejection sampling process. Next, the
sampled support is converted to an n-dimensional array.

1.7 Parameters

In this section, we specify which codes are used for HQC and give concrete sets of param-
eters. As mentioned in the previous section, we use a tensor product code (Def. 1.5.1)
C = BCH(n1, k, δ)⊗1n2 . A message m ∈ Fk2 is encoded into m1 ∈ Fn1

2 with the BCH code,
then each coordinate m1,i of m1 is encoded into m̃1,i ∈ Fn2

2 with 1n2 . To match the de-
scription of our cryptosystem in Sec. 1.3, we have mG = m̃ = (m̃1,0, . . . , m̃1,n1−1) ∈ Fn1n2

2 .
To obtain the ciphertext, r = (r1, r2)

$← R2 and e
$← R are generated and the encryption

of m is c = (u = r1 + h · r2,v = mG + s · r2 + e).
We propose several sets of parameters, targeting different levels of security. According

23



to NIST, it may be assumed that an attacker can only make 264 queries to the decryption
oracle. In this sense, we propose several decryption failure rates ranging from 2−64 to
2−λ where λ is the security parameter. The proposed sets of parameters cover security
categories 1, 3, and 5 (for respectively 128, 192, and 256 bits of security). For each parameter
set, the parameters are chosen so that the minimal workfactor of the best known attack
exceeds the security parameter. For classical attacks, best known attacks include the works
from [10, 7, 15, 3] and for quantum attacks, the work of [5]. We consider w = O (

√
n) and

follow the complexity described in [11] (see Sec. 5 for more details).
In Tab. 2, n1 denotes the length of the BCH code, n2 the length of the repetition code 1

so that the length of the tensor product code C is n1n2 (the ambient space has length n, the
smallest primitive prime greater than n1n2 to avoid algebraic attacks). k is the dimension
of the BCH code and hence also the dimension of C. δ is the decoding capability of the
BCH code, i.e. the maximum number of errors that the BCH can decode. w is the weight
of the n-dimensional vectors x, y, wr the weight of r1, and r2 and similarly we = ω(e) for
our cryptosystem.

Instance n1 n2 n k δ w wr = we security pfail

hqc-128-1 796 31 24,677 256 60 67 77 128 < 2−128

hqc-192-1 766 57 43,669 256 57 101 117 192 < 2−128

hqc-192-2 766 61 46,747 256 57 101 117 192 < 2−192

hqc-256-1 766 83 63,587 256 57 133 153 256 < 2−128

hqc-256-2 796 85 67,699 256 60 133 153 256 < 2−192

hqc-256-3 796 89 70,853 256 60 133 153 256 < 2−256

Table 2: Parameter sets for HQC. The tensor product code used is C = BCH(n1, k1, δ1)⊗1n2

(see Sec. 1.5.1). The considered BCH codes are initially of length 1023, then shortened to
support 256 bits dimension (see Tab. 1 and Sec. 1.5.2). For the resulting public key, secret
key and ciphertext sizes, please see Tab. 3 below. One may use seeds to shorten keys thus
obtaining sizes presented in Tab. 4. The aforementioned sizes are the ones used in our
reference implementation except that we also concatenate the public key within the secret
key in order to respect the NIST API.

Computational costs of the system. For encryption the main cost is a product of
a cyclic matrix of size n with a vector of weight O(

√
n). Using the Fourier transform the

asymptotical cost is in O(n log(n)) but for our range of parameters, taking into account
the weight O(

√
n) allows to obtain a cost in O(n

3
2 ) which is better in practice that what

is obtained with Fourier transform. For decryption, there is always the cost of a matrix
times a small vector in O(n

3
2 ), plus the cost of decoding. For our proposition the decoding

consists in a repetition code of length n2 and the decoding of BCH code of length n1

(766 ≤ n1 ≤ 796), the cost of the repetition code decoding is hence linear, when the cost
of the BCH is quadratic in the length n1 of the BCH code. Overall the main cost remains
the computation of the matrix-vector product in O(n

3
2 ).
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Instance pk size sk size ct size ss size
hqc-128-1 6,170 252 6,234 64
hqc-192-1 10,918 404 10,981 64
hqc-192-2 11,688 404 11,749 64
hqc-256-1 15,898 532 15,960 64
hqc-256-2 16,926 566 16,984 64
hqc-256-3 17,714 566 17,777 64

Table 3: Resulting theoretical sizes in bytes for HQC. The public key pk is composed of (h,
s) and has size 2n bits. The secret key sk is composed of (x, y) and has size 2wdlog2(n)e
bits. The ciphertext ct is composed of (u, v, d) and has size n + n1n2 + 512 bits. The
shared secret ss is composed of K and has size 512 bits (SHA512 output size).

Instance pk size sk size ct size ss size
hqc-128-1 3,125 40 6,234 64
hqc-192-1 5,499 40 10,981 64
hqc-192-2 5,884 40 11,749 64
hqc-256-1 7,989 40 15,960 64
hqc-256-2 8,503 40 16,984 64
hqc-256-3 8,897 40 17,777 64

Table 4: Resulting sizes in bytes for HQC using NIST seed expander initialized with 40
bytes long seeds. The public key pk is composed of (seed1, s) and has size 320 + n (in
bits). The secret key sk is composed of (seed2) and has size 320 (in bits). The ciphertext
ct is composed of (u, v, d) and has size n + n1n2 + 512 (in bits). The shared secret ss is
composed of K and has size 512 bits (SHA512 output size).

2 Performance Analysis

2.1 Reference Implementation

In this section, we provide concrete performance measures of the reference implementation.
For each parameter set, results have been obtained by running 10,000 random instances and
computing their average median execution time. The benchmarks have been performed on
a machine running Archlinux. The latter has 16GB of memory and an Intel R© CoreTM i7-
7820X CPU @ 3.6GHz for which the Hyper-Threading, Turbo Boost and SpeedStep features
were disabled. The reference implementation is written in C++ and have been compiled with
g++ (version 8.2.1) using the compilation flags -O3 -flto -pedantic -Wall -Wextra. The
following third party libraries have been used: openssl (version 1.1.1b), gmp (version 6.1.2),
NTL (version 11.3.2) [40] and GF2X (version 1.2).

The performances of our reference implementation on the aforementioned benchmark
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platform are described in Tab. 5 (timings in ms) and Tab. 6 (millions of CPU cycles
required).

Instance KeyGen Encaps Decaps
hqc-128-1 0.11 0.2 0.26
hqc-192-1 0.21 0.34 0.45
hqc-192-2 0.21 0.38 0,49
hqc-256-1 0.3 0.51 0.67
hqc-256-2 0.31 0.53 0.7
hqc-256-3 0.32 0.55 0.73

Table 5: Timings (in ms) of the reference implementation for different instances of HQC.

Instance KeyGen Encaps Decaps
hqc-128-1 0.4 0.77 0.98
hqc-192-1 0.73 1.27 1.66
hqc-192-2 0.76 1.29 1.7
hqc-256-1 1.06 1.81 2.41
hqc-256-2 1.1 1.89 2.5
hqc-256-3 1.14 1.96 2.59

Table 6: Millions of cycles for the reference implementation for different instances of HQC.

2.2 Optimized Implementation

In this section, we provide concrete performance measures of the optimized implementation.
For each parameter set, results have been obtained by running 10,000 random instances and
computing their average median execution time. The benchmarks have been performed on
a machine running Archlinux. The latter has 16GB of memory and an Intel R© CoreTM i7-
7820X CPU @ 3.6GHz for which the Hyper-Threading, Turbo Boost and SpeedStep features
were disabled. The scheme have been compiled with gcc (version 8.2.1). The following third
party library have been used: openssl (version 1.1.1b).

The optimized implementation is written in C and includes an optimized algorithm to
perform the multiplication of two vectors by using AVX2 and AVX512 instructions. The
algorithm uses the matrix vector form of multiplication and takes advantage of the low
Hamming weight of the vectors in the HQC scheme.

Two compilation flags are used: -O3 -std=c99 -flto -mavx -mavx2 -pedantic
-Wall -Wextra and -O3 -std=c99 -flto -mavx -mavx2 -mavx512bw -mavx512vl
-pedantic -Wall -Wextra for respectively AVX2 and AVX512 instructions.

There are two main differences between the reference and the optimized implementa-
tion. Firstly, the former uses NTL [40] to do the multiplication and the latter uses the
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aforementioned optimized algorithm. Secondly, in the optimized implementation we added
some optimizations to the BCH decoding algorithm.

The performances of our optimized implementation using AVX2 instructions on the afore-
mentioned benchmark platform are described in Tab. 7 (timings in ms) and Tab. 8 (millions
of CPU cycles required). Benchmark using AVX512 instructions are given in in Tab. 9 (tim-
ings in ms) and Tab. 10 (millions of CPU cycles required).

Instance KeyGen Encaps Decaps
hqc-128-1 0.06 0.11 0.14
hqc-192-1 0.11 0.2 0.26
hqc-192-2 0.11 0.21 0,28
hqc-256-1 0.17 0.32 0.41
hqc-256-2 0.17 0.34 0.43
hqc-256-3 0.18 0.35 0.45

Table 7: Timings (in ms) of the optimized implementation using AVX2 instructions for
different instances of HQC.

Instance KeyGen Encaps Decaps
hqc-128-1 0.2 0.38 0.5
hqc-192-1 0.37 0.72 0.93
hqc-192-2 0.4 0.76 0.98
hqc-256-1 0.59 1.14 1.49
hqc-256-2 0.62 1.21 1.56
hqc-256-3 0.65 1.25 1.61

Table 8: Millions of cycles for the optimized implementation using AVX2 instructions for
different instances of HQC.

Instance KeyGen Encaps Decaps
hqc-128-1 0.05 0.11 0.13
hqc-192-1 0.1 0.19 0.23
hqc-192-2 0.1 0.2 0,24
hqc-256-1 0.15 0.28 0.35
hqc-256-2 0.15 0.3 0.37
hqc-256-3 0.16 0.31 0.38

Table 9: Timings (in ms) of the optimized implementation using AVX512 instructions for
different instances of HQC.
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Instance KeyGen Encaps Decaps
hqc-128-1 0.18 0.39 0.46
hqc-192-1 0.34 0.67 0.82
hqc-192-2 0.36 0.71 0.86
hqc-256-1 0.52 1.02 1.27
hqc-256-2 0.55 1.07 1.31
hqc-256-3 0.57 1.1 1.35

Table 10: Millions of cycles for the optimized implementation using AVX512 instructions for
different instances of HQC.

2.3 Additional Implementation

We provide a constant-time algorithm for the decoding of BCH codes preventing timing
attack against HQC (see Section 5 for more details on the attack). Our implementation
achieves constant time execution without significant performance penalty. Table 11 gives
the overhead introduced by the constant time BCH decoding algorithm when used as part
of the Decapsulate step of HQC in the optimized implementation.

Instance Decaps with
non constant time decoding

Decaps with
constant time decoding Overhead %

hqc-128-1 0.5 0.54 6.6
hqc-192-1 0.93 0.96 3.4
hqc-192-2 0.98 1.02 3.8
hqc-256-1 1.49 1.52 1.9
hqc-256-2 1.56 1.6 2.6
hqc-256-3 1.61 1.66 2.9

Table 11: Running time (Millions of cycles) of the Decapsulate step when non constant time
and constant time BCH decoding algorithm is used.

3 Known Answer Test Values
Known Answer Test (KAT) values have been generated using the script provided by
the NIST. They are available in the folders KAT/Reference_Implementation/ and
KAT/Optimized_Implementation/.

In addition, we provide, for each parameter set, an example with intermediate values in
the folder KAT/Reference_Implementation/.

Notice that one can generate the aforementioned test files using respectively the kat
and verbose modes of our implementation. The procedure to follow in order to do so is
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detailed in the technical documentation.

4 Security
In this section we prove the security of our encryption scheme viewed as a PKE scheme
(IND-CPA). The security of the KEM/DEM version is provided by the transformation
described in [24], and the tightness of the reduction provided by this transformation has
been discussed at the end of Sec. 1.2.

Theorem 4.1. The scheme presented above is IND-CPA under the assumption that both the
2-DQCSD with parity and 3-DQCSD with parity and erasures are hard.

Proof of Theorem 4.1. To prove the security of the scheme, we are going to build a sequence
of games transitioning from an adversary receiving an encryption of message m0 to an
adversary receiving an encryption of a message m1, and show that if the adversary manages
to distinguish one from the other, then we can build a simulator breaking the DQCSD
assumption with parity and ` ≥ 1 erasure(s), for QC codes of index 2 or 3 (codes with
parameters [2n, n] or [3n, n]), and running in approximately the same time.

Game G1: This is the real game, which we can state algorithmically as follows:

Game1E,A(λ)
1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param) with pk = (h,s = x + h · y) and sk = (x,y)
3. (m0,m1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,m0) = (u,v) ∈ Fn2 × Fn1n2

2

5. b′ ← A(GUESS : c∗)
6. RETURN b′

Game G2: In this game we start by forgetting the decryption key sk = (x,y), and taking
s at random of same bit parity b = w + h(1)× w mod 2 as s′ = x + h · y, and then
proceed honestly:

Game2E,A(λ)
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (h, s′ = x + h · y) and sk = (x,y)

2b. s $← Fn2,b, for b = s′(1) mod 2
2c. (pk, sk)← ((h, s),0)
3. (m0,m1)← A(FIND : pk)
4. c∗ ← Encrypt(pk,m0) = (u,v) ∈ Fn2 × Fn1n2

2

5. b′ ← A(GUESS : c∗)
6. RETURN b′
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The adversary has access to pk and c∗. As he has access to pk and the Encrypt
function, anything that is computed from pk and c∗ can also be computed from just
pk. Moreover, the distribution of c∗ is independent of the game we are in. Indeed,
assume that m0 and m1 have different bit parities. Without loss of generality, say
even for m0 and odd for m1 and assume h has odd parity (a similar reasoning holds
for h of even parity). As w, wr, and we are all odd (see Tab. 2), the adversary knows
the parity of mbG ∈ Fn2 , sr2 ∈ Fn2 , and e ∈ Fn2 . As the message is encrypted in Fn1n2

2 ,
the last ` = n − n1n2 bits of the vector v are truncated, yielding a vector ṽ ∈ Fn1n2

2

of unknown parity. This is illustrated in Fig. 5. Therefore we can suppose the only
input of the adversary is pk.

v = 0100010 . . . 0101 . . .

ṽ = 0100010 . . . ?

n = next_primitive_prime (n1n2)

n1n2 n− n1n2

Figure 5: Truncation of vector v from Fn2 to ṽ ∈ Fn1n2
2 .

Now suppose the adversary has an algorithm Dλ, taking pk as input, that distinguishes
with advantage ε Game G1 and Game G2, for some security parameter λ. Then he
can also build an algorithm D′E,Dλ which solves the 2-DQCSD(n,w, b) problem with
parity with the same advantage ε as the game distinguisher.

D′E,Dλ((H, s))
1. Set param← Setup(1λ)
2. pk← (h, s)
3. b′ ← Dλ(pk)
4. If b′ == 1 output QCSD
5. If b′ == 2 output UNIFORM

Note that if we define pk as (h,y) and (H,y>) from a 2-QCSD(n,w, b) distribution
with parity, pk follows exactly the same distribution as in Game G1. On the other
hand if (H,y>) comes from a uniform distribution over Fn×2n2,b ×Fn2,b′ , pk follows exactly
the same distribution as in Game G2.

Thus we have:

Pr
[
D′E,Dλ((H,y>)) = QCSD|(H,y>)← 2-QCSD(n,w, b)

]
=

Pr
[
Dλ(pk) = 1|pk from Game0E,A(λ)

]
, and

(26)

Pr
[
D′E,Dλ((H,y>)) = UNIFORM|(H,y>)← 2-QCSD(n,w, b)

]
=

Pr
[
Dλ(pk) = 2|pk from Game0E,A(λ)

] (27)
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And similarly when (H,y>) is uniform the probabilities of D′E,Dλ outputs match those
of Dλ when pk is from Game2E,A(λ). The advantage of D′E,Dλ is therefore equal to the
advantage of Dλ.

Game G3: Now that we no longer know the decryption key, we can start generating ran-
dom ciphertexts. So instead of picking correctly weighted r1, r2, e, the simulator now
picks random vectors in Fn2,wr

and Fn2,we
.

Game3E,A(λ)
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (h,s′ = x + h · y) and sk = (x,y)

2b. s $← Fn2,b, for b = s′(1) mod 2
2c. (pk, sk)← ((h,s),0)
3. (m0,m1)← A(FIND : pk)

4a. e $← Fn2,we
, r = (r1, r2)

$← Fn2,wr
× Fn2,wr

4b. u← r1 + hr2 and v←m0G + s · r2 + e
4c. c∗ ← (u,v) , with v truncated in Fn1n2

2

5. b′ ← A(GUESS : c∗)
6. RETURN b′

As we have
(u,v −m0G)> =

(
In 0 rot(h)
0 In rot(s)

)
· (r1, e, r2)> ,

the difference between Game G2 and Game G3 is that in the former((
In 0 rot(h)
0 In rot(s)

)
, (u,v −m0G)>

)
follows the 3-QCSD distribution with parity, and in the latter it follows a uniform
distribution (as r1 and e are uniformly distributed over Fn2,b with b odd) over F

2n×3n
2,b1,b2

×
(Fn2,b′1 × Fn2,b′2).

Note that an adversary is not able to obtain c∗ from pk anymore, as depending on
which game we are c∗ is generated differently. The input of a game distinguisher will
therefore be (pk, c∗). As it must interact with the challenger as usually we suppose it
has two access modes FIND and GUESS to process first pk and later c∗.

Suppose the adversary is able to distinguish Game G2 and Game G3, with a distin-
guisher Dλ, which takes as input (pk, c∗) and outputs a guess b′ ∈ {2, 3} of the game
we are in.

Again, we can build a distinguisher D′E,Dλ that will break the 3-DQCSD(n,w, b1, b2)
with parity and ` = n− n1n2 erasures assumption from Setup(1λ) with the same ad-
vantage as the game distinguisher. In the 3-DQCSD(n,w, b1, b2) problem with parity,
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matrix H is assumed to be of the form(
In 0 rot(a)
0 In rot(b)

)
.

In order to use explicitly a and b we denote this matrix Ha,b instead of just H. We
will also note t = (t1, t2).

D′E,Dλ((Ha,b, (t1, t2)>))
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (h,s = x + h · y) and sk = (x,y)
2b. (pk, sk)← ((a,b),0)
3. (m0,m1)← A(FIND : pk)
4. u← t1, v←m0G + t2 and c∗ ← (u,v)
5. b′ ← Dλ(GUESS : c∗)
4. If b′ == 2 output QCSD
5. If b′ == 3 output UNIFORM

The distribution of pk is unchanged with respect to the games. If (Ha,b, (t1, t2)
>)

follows the 3-QCSD(n,w, b1, b2) distribution with parity, then

(t1, t2)> =

(
In 0 rot(a)
0 In rot(b)

)
· (z1, z2, z3)>

with ω(z1) = ω(z2) = ω(z3) = w. Thus, c∗ follows the same distribution as in
Game G2. If (Ha,b, (t1, t2)>) follows a uniform distribution with a of parity b1 and b
of parity b2, then c∗ follows the same distribution as in Game G3. We obtain therefore
the same equalities for the output probabilities of D′E,Dλ and Dλ as with the previous
games and therefore the advantages of both distinguishers are equal.

Game G4: We now encrypt the other plaintext. We chose r′1, r
′
2, e
′ uniformly at random

in Fn2,wr
and Fn2,we

and set u = r′1 + hr′2 and v = m1G + s · r′2 + e′. This is the last
game we describe explicitly since, even if it is a mirror of Game G3, it involves a new
proof.

Game4E,A(λ)
1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (h,s′ = x + h · y) and sk = (x,y)

2b. s $← Fn2,b, with b = s′(1) mod 2
2c. (pk, sk)← ((h,s),0)
3. (m0,m1)← A(FIND : pk)

4a. e′ $← Fn2,we
, r′ = (r′1, r

′
2)

$← Fn2,wr
× Fn2,wr

4b. u← r′1 + hr′2 and v←m1G + s · r′2 + e′

4c. c∗ ← (u,v)
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5. b′ ← A(GUESS : c∗)
6. RETURN b′

The outputs from Game G3 and Game G4 follow the exact same distribution, and
therefore the two games are indistinguishable from an information-theoretic point of
view. Indeed, for each tuple (r1, r2, e) of Game G3, resulting in a given (u,v), there
is a one to one mapping to a couple (r′1, r

′
2, e
′) resulting in Game G4 in the same

(u,v), namely r′1 = r1, r′2 = r2 and e′ = m0G + m1G. This implies that choosing
uniformly (r1, r2, e) in Game G3 and choosing uniformly (r′1, r

′
2, e
′) in Game G4 leads

to the same output distribution for (u,v).

Game G5: In this game, we now pick r′1, r
′
2, e
′ with the correct weight.

Game G6: We now conclude by switching the public key to an honestly generated one.

We do not explicit these last two games as Game G4 and Game G5 are the equivalents
of Game G3 and Game G2 except that m1 is used instead of m0. A distinguisher
between these two games breaks therefore the 3-DQCSD with parity and ` = n−n1n2

erasures assumption too. Similarly Game G5 and Game G6 are the equivalents of
Game G2 and Game G1 and a distinguisher between these two games breaks the
2-DQCSD with parity assumption.

We managed to build a sequence of games allowing a simulator to transform a ciphertext
of a message m0 to a ciphertext of a message m1. Hence, the advantage of an adversary
against the IND-CPA experiment is bounded as:

Advind
E,A(λ) ≤ 2

(
Adv2-DQCSD(λ) + Adv3-DQCSD(λ)

)
. (28)

5 Known Attacks
The practical complexity of the SD problem for the Hamming metric has been widely studied
for more than 50 years. Most efficient attacks are based on Information Set Decoding, a
technique first introduced by Prange in 1962 [37] and improved later by Stern [41], then
Dumer [14]. Recent works [33, 3, 34] suggest a complexity of order 2cw(1+negl(1)), for some
constant c. A particular work focusing on the regime w = negl(n) confirms this formula,
with a close dependence between c and the rate k/n of the code being used [11].

Specific structural attacks. Quasi-cyclic codes have a special structure which may
potentially open the door to specific structural attacks. A first generic attack is the DOOM
attack [39] which because of cyclicity implies a gain of O(

√
n) (when the gain is in O(n) for

MDPC codes, since the code is generated by a small weight vector basis). It is also possible
to consider attacks on the form of the polynomial generating the cyclic structure. Such
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attacks have been studied in [23, 32, 39], and are especially efficient when the polynomial
xn− 1 has many low degree factors. These attacks become inefficient as soon as xn− 1 has
only two irreducible factors of the form (x− 1) and xn−1 + xn−2 + ...+ x+ 1, which is the
case when n is prime and q generates the multiplicative group (Z/nZ)∗. Such numbers are
known up to very large values. We consider such primitive n for our parameters.

Parameters and tightness of the reduction. We proposed different sets of parameters
in Sec. 1.7 that provide 128 (category 1), 192 (category 3), and 256 (category 5) bits of
classical (i.e. pre-quantum) security. The quantum-safe security is obtained by dividing the
security bits by two (taking the square root of the complexity) [5]. For each security level, we
provide different decryption failure rates to better adapt to the adversary computing power.
Notice that even if the adversary has access to a quantum computer, this does not change
the decryption failure rate.4 Best known attacks include the works from [10, 7, 15, 33, 3, 34]
and for quantum attacks, the work of [5]. In the setting w = O (

√
n), best known attacks

have a complexity in 2−t ln(1−R)(1+o(1)) where t = O(w) and R is the rate of the code [11]. In
our configuration, we have t = 2w and R = 1/2 for the reduction to the 2-DQCSD problem,
and t = 3wr and R = 1/3 for the 3-DQCSD problem. By taking into account the DOOM
attack [39], and also the fact that we consider balanced vectors (x,y) and (r1, e, r2) for the
attack (which costs only a very small factor, since random words have a good probability to
be balanced on each block), we need to divide this complexity by approximately

√
n (up to

polylog factor). The term o(1) is respectively log
((

n
w

)2
/
(
2n
2w

))
and log

((
n
wr

)3
/
(
3n
3wr

))
for the

2-DQCSD and 3-DQCSD problems. Overall our security reduction is tight corresponding to
generic instances of the classical 2-DQCSD and 3-DQCSD problems according to the best
attacks of [11].

Timing attack. It has been shown in [42] that HQC is vulnerable to timing attack
if the decoding of the BCH codes is implemented in a non constant time fashion. The
attack exploits a correlation between the weight of the error to be decoded and the running
time of the decoding algorithm of BCH codes. Therefore, constant time BCH decoding is
mandatory for HQC.

6 Advantages and Limitations

6.1 Advantages

The main advantages of HQC over existing code-based cryptosystems are:

• its IND-CPA reduction to a well-understood problem on coding theory: the Quasi-
Cyclic Syndrome Decoding problem,

4We do not consider the very strong adversarial model where the adversary is given access to a quantum
decryption oracle.
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• its immunity against attacks aiming at recovering the hidden structure of the code
being used,

• close estimations of its decryption failure rate.

The last item allows to achieve a tight reduction for the IND-CCA2 security of the
KEM-DEM version through the recent transformation of [24].

6.2 Limitations

We have proposed an instantiation of HQC using BCH codes tensored with repetition
codes. As seen above, this construction presents the major advantage of making possible
and easy to conduct a study of the error vector distribution, yielding a good estimation of
the decryption failure rate. HQC might be more efficient with other families of codes, but
another analysis would have to be done.

A first limitation to our cryptosystem (at least for the PKE version) is the low encryption
rate. It is possible to encrypt 256 bits of plaintext as required by NIST, but increasing this
rate also increases the parameters.

As a more general limitation and in contrast with lattices and the so-called Ring Learning
With Errors problem, code-based cryptography does not benefit from search to decision
reduction for structured codes.
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