
Hamming Quasi-Cyclic (HQC)
Fourth round version

Updated version 19/02/2025

HQC is an IND-CCA2 KEM running for standardization to NIST's competition in the
category �post-quantum public key encryption scheme�. Parameters sets are given for the
three categories 1, 3 and 5. The main features of the HQC submission are:

- IND-CCA2 KEM
- Small public key size
- Precise DFR analysis
- E�cient implementations based on classical decoding algorithms

Principal Submitters (by alphabetical order):

� Carlos Aguilar Melchor

(SandboxAQ)

� Nicolas Aragon

(Univ. of Limoges)

� Slim Bettaieb

(TII)

� Loïc Bidoux

(TII)

� Olivier Blazy

(Ecole Polytechnique)

� Jurjen Bos

(Worldline)

� Jean-Christophe Deneuville

(ENAC)

� Arnaud Dion

(ISAE Supaero)

� Philippe Gaborit

(Univ. of Limoges)

� Jérôme Lacan

(ISAE Supaero)

� Edoardo Persichetti

(Florida Atlantic Univ.)

� Jean-Marc Robert

(Univ. of Toulon)

� Pascal Véron

(Univ. of Toulon)

� Gilles Zémor

(Univ. of Bordeaux)

Inventors: Same as submitters

Developers: Same as submitters

Owners: Same as submitters

Main contact

x Philippe Gaborit

@ philippe.gaborit@unilim.fr

H +33-626-907-245

= University of Limoges

B 123 avenue Albert Thomas
87 060 Limoges Cedex
France

Backup point of contact

x Jean-Christophe Deneuville

@ jean-christophe.deneuville@enac.fr

H +33-631-142-705

= ENAC Toulouse

B 7 avenue Edouard Belin
31 400 Toulouse
France

Signatures

Digital copies of the signed statements were provided to NIST in the original submis-
sion on Nov. 30, 2017. The paper versions have been provided to NIST at the First PQC
Standardization Conference on Apr. 13, 2018.
Paper versions of the signed statements for the team members added in round 3 will be
provided to NIST during the next PQC Standardization Conference.

2

mailto:philippe.gaborit@unilim.fr
mailto:jean-christophe.deneuville@enac.fr

1 History of updates on HQC

1.1 Updates for February 19, 2025

� We �xed an implementation bug in both the reference and optimized versions of
HQC, where an indexing error led to an incorrect interpretation of the public key
during the decapsulation phase. This resulted in the decapsulation function returning
an incorrect shared secret when given malformed ciphertext. The vulnerability was
discovered by Célian Glénaz and Dahmun Goudarzi and brought to our attention by
Spencer Wilson and Douglas Stebila.

1.2 Updates for October 30, 2024

� We have modi�ed the order of variable sampling in both key generation and encryp-
tion, following the recommendations from the authors of [2], who demonstrated that
this change results in signi�cant performance gains in hardware implementation.

� We have updated the countermeasure against multi-target attacks by modifying the
key binding process. Speci�cally, we changed the hashing mechanism to include only
the �rst 32 bytes of the public key, instead of the entire public key, along with the
message and a salt.

We have updated the implementation to re�ect these improvements, and the Known
Answer Test (KAT) �les have been updated accordingly. The following table highlights
the performance improvements resulting from the updates, with encapsulation improved by
approximately 10 to 13% and decapsulation improved by approximately 3 to 12%.

Instance KeyGen Encaps Decaps

hqc-128 75 177 323

hqc-192 175 404 669

hqc-256 356 799 1427

Table 1: Performance in kilocycles of the optimized implementation using AVX2 instructions
for di�erent instances of HQC.

1.3 Updates for February the 23rd 2024

� We have updated our IND-CPA security proof and de�nitions of hard problems in
order to �x an issue regarding the arguments of indistinguishability between Game 3
and 4 due to a lack of technical update after the introduction of truncation. One
should note that neither the design, implementation nor parameters of the scheme
are a�ected by this modi�cation.

3

� We have updated our implementation replacing the modulo operator by the Barrett
reduction as a counter-measure against the timing attack identi�ed in [31].

1.4 Updates for April the 30th 2023

� We now consider the HHK transform with implicit rejection into our scheme. We
provide an IND-CCA2 security proof in the HHK framework for this modi�cation.
We have updated the implementation to re�ect the aforementioned changes and have
also updated the KATs to align with these improvements..

� We provide a security analysis indicating that sampling vectors of small weights non-
uniformly, yet close to uniform, has a negligible e�ect on HQC's IND-CCA2 security,
following the approach of Nicolas Sendrier ("Secure Sampling of Constant-Weight
Words, Application to BIKE". IACR Cryptol. ePrint Arch. 2021: 1631 (2021)).

1.5 Updates for October the 1st 2022

� Multi-ciphertext attack: for HQC-128 the ciphertext is generated deterministically
from a seed of 128 bits, which allows a straightforward multi-ciphertext attack that
allows an attacker to recover the shared secret for one out of N ciphertexts at a cost of
2128/N . This attack does not contradict the claim of category 1 IND-CCA2 security
for this parameter set of HQC, meanwhile since it is an undesirable property, we
modi�ed our scheme at negligible cost by incorporating a public salt value into the
ciphertext (for all security levels). So that the randomness θ is now computed from a
salt together with the public key.

θ = SHAKE256-512(m∥pk∥salt)

We modi�ed our scheme and the proof accordingly.

� Counter-measure to a timing attack: In the paper:

"Don't Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in
HQC and BIKE" by Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman
Lahr, Alexander Nilsson, and Robin Leander Schroder published a CHES 2022, the
authors explain how it is possible to use the randomness generator of the small weight
words to produce an attack. In order to counter this attack we included the counter-
measure described by Nicolas Sendrier (Algo 5) in:

"Secure Sampling of Constant-Weight Words, Application to BIKE". IACR Cryptol.
ePrint Arch. 2021: 1631 (2021)

In practice this counter-measures implies a loss of a few percentages points in our
performance.

4

� Constant time additional implementation: we included a pure C constant time
(not optimized) implementation.

� The hardware implementation does not currently incorporate the aforementioned mit-
igation related to multi-ciphertext attacks. We will provide an updated version in the
next release.

We recall the main parameters of HQC and the last performances (in kilocycles):

Public key size Ciphertext size KeyGen Encaps Decaps DFR
hqc-128 2,249 4,497 87 204 362 < 2−128

hqc-192 4,522 9,042 204 465 755 < 2−192

hqc-256 7,245 14,485 409 904 1505 < 2−256

1.6 Updates for June the 6th 2021

� Domain separation and the randomness generation are now performed using a KEC-
CAK core rather than the functions randombytes and seedexpander provided by
NIST.

� We provide a full HLS-compatible hardware implementation with two �avors: perfor-
mance oriented and compactness oriented.

� A design of a common hardware-software architecture resulting in the same outputs
for both the hardware and software reference implementation.

1.7 Updates for October the 1st 2020

� Since the RMRS decoder is strictly better than the BCH-Repetition decoder, we now
only consider the RMRS decoder version of the HQC algorithm and we do not consider
the BCH-Repetition decoder any more.

� In order to �t more precisely the Level 1 and 3 of NIST security categories, the sizes
of the decoded messages for the concatenated RMRS code are set to the adequate
security levels (i.e. dimension 128 and dimension 192 rather than 256 for level 1 and
level 3), for Level 1 and Level 3 this modi�cation improves on the decoding capacity
of the RMRS code and hence improves parameters.

� We improved the theoretical lower bound for the Reed-Muller decoder (approaching
optimality), which permits to lower our theoretical bound for the DFR and hence also
improve on parameters (section 2.5).

� Based on the two previous improvements, we provide new sets of parameters, and we
obtain the following sizes (in bytes) and performances (in kilocycles):

5

Public key size Ciphertext size KeyGen Encaps Decaps DFR
hqc-128 2,249 4,481 136 220 384 < 2−128

hqc-192 4,522 9,026 305 501 821 < 2−192

hqc-256 7,245 14,469 545 918 1538 < 2−256

� All these changes have been implemented in constant time and we provide details on
our implementations for multiplication and encoding/decoding (section 3.2).

� We give performances numbers for a hardware implementation of the scheme in section
3.3.

� We are pleased to welcome new members to our team: Jérôme Lacan and Arnaud
Dion.

1.8 Updates for May the 4th 2020

We provide in this update two main theoretical improvements which do not change the
scheme and updates on our implementations.

� (Improvement 1) We provide in Section 2.4 a more precise analysis of the mod-
elization of the error distribution. This new analysis permits to lower the DFR of our
parameters and permits to decrease the size of our public keys by 3% (new parameters
are given in Table 2 of Section 2.8.1). The size for 128 security bits is now (3,024
Bytes).

� (Improvement 2) We introduce in Section 2.6 a new decoding algorithm based
on the concatenation of Reed-Muller and Reed-Solomon codes. This new algorithm
does not change the general scheme nor its security and permits to decrease the size
of the public key by 17% for 128 security bit (now of size 2,607 Bytes), a new set
of parameters, HQC-RMRS, is given in Section 2.8.2 for 128, 192 and 256 bits of
security.

� For parameters, we now only consider DFR corresponding to the security level and
remove three parameters compared to the round 2 submission. We now only have
one set of parameters for each level of security (both for HQC and the HQC-RMRS
decoding variation).

� Our implementations gained in e�ciency. Our optimized AVX2 implementation is
now constant time and avoids secret dependent memory access. We provide new
optimized implementations in C and AVX2 for the two sets of parameters HQC and
HQC-RMRS (see Section 3.1 and 3.2). Moreover our implementations no longer rely
on third party libraries.

6

� We highlight in Section 2.8.3 how it could be possible to further decrease by 10% the
size of the public keys with a security reduction to a slight variation of the 3-QCSD
problem.

� We welcome Jean-Marc Robert and Pascal Véron from the University of Toulon
(France) as new members of our team.

� For 128 bits of security, we obtain the following sizes (in bytes) and performances (in
kilocycles) for our optimized implementation leveraging AVX2:

Public key size Ciphertext size KeyGen Encaps Decaps DFR
HQC 3,024 6,017 175 286 486 < 2−128

HQC-RMRS 2,607 5,191 160 272 556 < 2−128

1.9 Modi�cations between Round 1 and Round 2

� Jurjen Bos (from Worldline) joined the HQC team.

� Problems with parity: As previously announced few months ago, the 2 and 3-DQCSD
problems with parity distributions have been introduced to counter distinguisher from
parity.

� Minor scheme modi�cation : due to the speci�c use of tensor product codes (BCH
and repetition), the length of the code is not required to be a prime. Speci�cally, the
tensor product code has length n1n2 with n1 (resp. n2) the length of the BCH (resp.
repetition) code. In order to avoid algebraic attacks using polynomial factorization,
we chose primitive primes n immediately greater than n1n2. This results in extra bits,
that are truncated where useless. The proof has been modi�ed accordingly.

� The reference implementation now relies on NTL.

� We added an optimized implementation written in C that uses AVX2 instructions
and takes advantages of the low Hamming weight of the vectors in HQC.

� We added a constant time implementation of the decoding of BCH codes.

� Parameters providing a Decryption Failure Rate (DFR) higher than 2−128 have been
discarded.

7

Contents

1 History of updates on HQC 3
1.1 Updates for February 19, 2025 . 3
1.2 Updates for October 30, 2024 . 3
1.3 Updates for February the 23rd 2024 . 3
1.4 Updates for April the 30th 2023 . 4
1.5 Updates for October the 1st 2022 . 4
1.6 Updates for June the 6th 2021 . 5
1.7 Updates for October the 1st 2020 . 5
1.8 Updates for May the 4th 2020 . 6
1.9 Modi�cations between Round 1 and Round 2 7

2 Speci�cations 10
2.1 Preliminaries . 10

2.1.1 General de�nitions . 10
2.1.2 Di�cult problems for cryptography 12

2.2 Encryption and security . 15
2.3 Presentation of the scheme . 16

2.3.1 Public key encryption version (HQC.PKE) 16
2.3.2 A Key Encapsulation Mechanism (HQC.KEM) 17

2.4 Analysis of the error vector distribution for Hamming distance 17
2.5 Decoding with concatenated Reed-Muller and Reed-Solomon codes 21

2.5.1 De�nitions . 21
2.5.2 Reed-Solomon codes . 22
2.5.3 Encoding shortened Reed-Solomon codes 23
2.5.4 Decoding shortened Reed-Solomon codes 24
2.5.5 Duplicated Reed-Muller codes . 25
2.5.6 Encoding Duplicated Reed-Muller codes 26
2.5.7 Decoding Duplicated Reed-Muller codes 26
2.5.8 Decryption failure rate analysis . 27
2.5.9 Simulation results . 30

2.6 Representation of objects . 30
2.6.1 Keys and ciphertext representation 30
2.6.2 Randomness and vector generation 31
2.6.3 Sampling order for key generation and encryption 32
2.6.4 The functions G and K . 32

2.7 Parameters . 32
2.7.1 Concatenated codes . 32

8

3 Performance Analysis 33
3.1 Reference implementation . 34
3.2 Optimized constant-time implementation . 34
3.3 Hardware Implementation . 36

4 Known Answer Test Values 38

5 Security 38
5.1 IND-CPA security . 38
5.2 IND-CCA2 security . 42

5.2.1 HQC.PKE correction and DFR . 42
5.2.2 A CCA proof for HQC . 42

5.3 Security proof with non uniform randomness generation 44
5.3.1 Arguments related to the security reduction 45
5.3.2 Arguments related to the public key generation 46

6 Known Attacks 46

7 Advantages and Limitations 48
7.1 Advantages . 48
7.2 Limitations . 48

References 48

9

2 Speci�cations

In this section, we introduce HQC, an e�cient encryption scheme based on coding the-
ory. HQC stands for Hamming Quasi-Cyclic. This proposal has been published in IEEE
Transactions on Information Theory [1].

HQC is a code-based public key cryptosystem with several desirable properties:

� It is proved IND-CPA assuming the hardness of (a decisional version of) the Syndrome
Decoding on structured codes. By construction, HQC perfectly �ts the recent KEM-
DEM transformation of [20], and allows to get an hybrid encryption scheme with
strong security guarantees (IND-CCA2),

� In contrast with most code-based cryptosystems, the assumption that the family of
codes being used is indistinguishable among random codes is no longer required, and

� It features a detailed and precise upper bound for the decryption failure probability
analysis.

Organization of the Speci�cations. This section is organized as follows: we provide
the required background in Section 2.1, we make some recalls on encryption and security in
Section 2.2 then present our proposal in Section 2.3. An analysis of the decryption failure
rate is proposed in Section 2.4. Details about codes being used are provided in Section 2.5,
together with a speci�c analysis for these codes. Finally, concrete sets of parameters are
provided in Section 2.7.

2.1 Preliminaries

2.1.1 General de�nitions

Throughout this document, Z denotes the ring of integers and F2 the binary �nite �eld.
Additionally, we denote by ω(·) the Hamming weight of a vector i.e. the number of its
non-zero coordinates, and by Sn

w (F2) the set of words in Fn
2 of weight w. Formally:

Sn
w (F2) = {v ∈ Fn

2 , such that ω(v) = w} .

Let truncate(v, num_bits) be the function that takes as input a vector v of size
n and an integer num_bits and returns the truncation of v by num_bits bits. Let
firstBytes(var, num_bytes) be the function that takes as input a byte string var and an integer
num_bytes. This function returns the �rst num_bytes of var.

Let V denotes a vector space of dimension n over F2 for some positive n ∈ Z. Elements of
V can be interchangeably considered as row vectors or polynomials in R = F2[X]/(Xn−1).
Vectors/Polynomials (resp. matrices) will be represented by lower-case (resp. upper-case)
bold letters. A prime integer n is said primitive if the polynomial Xn − 1/(X − 1) is
irreducible in R.

10

For u,v ∈ V , we de�ne their product similarly as in R, i.e. uv = w ∈ V with

wk =
∑

i+j≡k mod n

uivj, for k ∈ {0, 1, . . . , n− 1}. (1)

Our new protocol takes great advantage of the cyclic structure of matrices. In the same
fashion as [1], rot(h) for h ∈ V denotes the circulant matrix whose ith column is the vector
corresponding to hX i. This is captured by the following de�nition.

De�nition 2.1.1 (Circulant Matrix). Let v = (v0, . . . , vn−1) ∈ Fn
2 . The circulant matrix

induced by v is de�ned and denoted as follows:

rot(v) =


v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
. . .

...
vn−1 vn−2 . . . v0

 ∈ Fn×n
2 (2)

As a consequence, it is easy to see that the product of any two elements u,v ∈ R can
be expressed as a usual vector-matrix (or matrix-vector) product using the rot(·) operator
as

u · v = u× rot(v)⊤ =
(
rot(u)× v⊤)⊤ = v × rot(u)⊤ = v · u. (3)

Coding Theory. We now recall some basic de�nitions and properties about coding
theory that will be useful to our construction. We mainly focus on general de�nitions, and
refer the reader to Section 2.3 the description of the scheme, and also to [21] for a complete
survey on code-based cryptography.

De�nition 2.1.2 (Linear Code). A Linear Code C of length n and dimension k (denoted
[n, k]) is a subspace of R of dimension k. Elements of C are referred to as codewords.

De�nition 2.1.3 (Generator Matrix). We say that G ∈ Fk×n
2 is a Generator Matrix for

the [n, k] code C if
C =

{
mG, for m ∈ Fk

2

}
. (4)

De�nition 2.1.4 (Parity-Check Matrix). Given an [n, k] code C, we say that H ∈ F(n−k)×n
2

is a Parity-Check Matrix for C if H is a generator matrix of the dual code C⊥, or more
formally, if

C =
{
v ∈ Fn

2 such that Hv⊤ = 0
}
, or equivalently C⊥ =

{
uH, for u ∈ Fn−k

2

}
. (5)

De�nition 2.1.5 (Syndrome). LetH ∈ F(n−k)×n
2 be a parity-check matrix of some [n, k] code

C, and v ∈ Fn
2 be a word. Then the syndrome of v is Hv⊤, and we have v ∈ C ⇔ Hv⊤ = 0.

De�nition 2.1.6 (Minimum Distance). Let C be an [n, k] linear code over R and let ω be
a norm on R. The Minimum Distance of C is

d = min
u,v∈C,u̸=v

ω(u− v). (6)

11

A code with minimum distance d is capable of decoding arbitrary patterns of up to
∆ = ⌊d−1

2
⌋ errors. Code parameters are denoted [n, k, d].

Code-based cryptography usually su�ers from huge keys. In order to keep our cryp-
tosystem e�cient, we will use the strategy of Gaborit [14] for shortening keys. This results
in Quasi-Cyclic Codes, as de�ned below.

De�nition 2.1.7 (Quasi-Cyclic Codes [29]). View a vector c = (c0, . . . , cs−1) of Fsn
2 as s

successive blocks (n-tuples). An [sn, k, d] linear code C is Quasi-Cyclic (QC) of index s if,
for any c = (c0, . . . , cs−1) ∈ C, the vector obtained after applying a simultaneous circular
shift to every block c0, . . . , cs−1 is also a codeword.

More formally, by considering each block ci as a polynomial in R = F2[X]/(Xn−1), the
code C is QC of index s if for any c = (c0, . . . , cs−1) ∈ C it holds that (X ·c0, . . . , X ·cs−1) ∈ C.

De�nition 2.1.8 (Systematic Quasi-Cyclic Codes). A systematic Quasi-Cyclic [sn, n] code
of index s and rate 1/s is a quasi-cyclic code with an (s− 1)n× sn parity-check matrix of
the form:

H =


In 0 · · · 0 A0

0 In A1

. . .
...

0 · · · In As−2

 (7)

where A0, . . . ,As−2 are circulant n× n matrices.

Remark 2.1. The de�nition of systematic quasi-cyclic codes of index s can of course be
generalized to all rates ℓ/s, ℓ = 1 . . . s − 1, but we shall only use systematic QC-codes of
rates 1/2 and 1/3 and wish to lighten notation with the above de�nition. In the sequel,
referring to a systematic QC-code will imply by default that it is of rate 1/s. Note that
arbitrary QC-codes are not necessarily equivalent to a systematic QC-code.

2.1.2 Di�cult problems for cryptography

In this section we describe di�cult problems which are relevant for HQC and discuss their
complexity. All problems are variants of the decoding problem, which consists of looking for
the closest codeword to a given vector. When dealing with linear codes, it is readily seen
that the decoding problem stays the same when one is given the syndrome of the received
vector rather than the received vector. We therefore speak of Syndrome Decoding (SD).

De�nition 2.1.9 (SD Distribution). Let n, k and w be positive integers. The Syndrome

Decoding Distribution SD(n, k, w) samples H
$← F(n−k)×n

2 and x
$← Fn

2 such that ω(x) = w,
computes y⊤ = Hx⊤ and outputs (H,y).

De�nition 2.1.10 (Computational SD Problem). Let n, k and w be positive integers.

Given (H,y) ∈ F(n−k)×n
2 × Fn−k

2 from the SD(n, k, w) distribution, the Syndrome Decoding
Problem SD(n, k, w) asks to �nd x ∈ Fn

2 such that y⊤ = Hx⊤ and ω(x) = w.

12

De�nition 2.1.11 (DSD Problem). Let n, k and w be positive integers. Given (H,y) ∈
F(n−k)×n
2 × Fn−k

2 , the Decisional Syndrome Decoding Problem DSD(n, k, w) asks to decide
with non-negligible advantage whether (H,y) came from the SD(n, k, w) distribution or the

uniform distribution over F(n−k)×n
2 × Fn−k

2 .

For the Hamming distance, the SD problem has been proven NP-complete [7]. This
problem can also be seen as the Learning Parity with Noise (LPN) problem with a �xed
number of samples [3]. The DSD problem has been shown to be polynomially equivalent
to its search version in [3]. As mentioned above, this problem is the problem of decoding
random linear codes from random errors. The random errors are often taken as indepen-
dent Bernoulli variables acting independently on vector coordinates, rather than uniformly
chosen from the set of errors of a given weight, but this hardly makes any di�erence and
one model rather than the other is a question of convenience.

As our cryptosystem use QC-codes, the following de�nitions describe the DSD problems
in the QC setting. QC codes are very useful in cryptography since their compact descrip-
tion allows to decrease considerably the size of the keys. In particular, the case s = 2
corresponds to double circulant codes with generator matrices of the form (In A) for A a
circulant matrix. Such double circulant codes have been used for more than 15 years in
cryptography [15].

De�nition 2.1.12 (s-QCSD Distribution). Let n, s and w be positive integers. The s-
Quasi-Cyclic Syndrome Decoding Distribution s-QCSD(n,w) samples a parity-check matrix

H
$← F(sn−n)×sn

2 of a systematic QC code C of index s and rate 1/s (see De�nition 2.1.8)

and a vector x = (x0, . . . ,xs−1)
$← Fsn

2 such that ω(xi) = w ∀i ∈ [0, s − 1], computes
y⊤ = Hx⊤ and outputs (H,y).

De�nition 2.1.13 (s-DQCSD Problem). Let n, s and w be positive integers. Given

(H,y) ∈ F(sn−n)×sn
2 × Fsn−n

2 , the Decisional s-Quasi-Cyclic Syndrome Decoding Problem
s-DQCSD(n,w) asks to decide with non-negligible advantage whether (H,y) came from the

s-QCSD(n,w) distribution or the uniform distribution over F(sn−n)×sn
2 × Fsn−n

2 .

It would be somewhat more natural to choose the parity-check matrix H to be made up
of independent uniformly random circulant submatrices, rather than with the special form
required by (7). We choose this distribution so as to make the security reduction to follow
less technical. It is readily seen that, for �xed s, when choosing quasi-cyclic codes with this
more general distribution, one obtains with non-negligible probability, a quasi-cyclic code
that admits a parity-check matrix of the form (7). Therefore requiring quasi-cyclic codes to
be systematic does not hurt the generality of the decoding problem for quasi-cyclic codes.
A similar remark holds for the slightly special form of weight distribution of the vector x.

Assumption 1. Although there is no general complexity result for quasi-cyclic codes, de-
coding these codes is considered hard by the community. There exist general attacks which

13

uses the cyclic structure of the code [32] but these attacks have only a small (sub-linear in
the code length) impact on the complexity of the problem. The conclusion is that in practice,
the best attacks are the same as those for non-circulant codes up to a small factor.

In order to avoid trivial distinguishers, an additional condition on the parity of the
syndrome needs to be appended. For b1 ∈ {0, 1}, we de�ne the �nite set Fn

2,b1
= {h ∈

Fn
2 s.t. h(1) = b1 mod 2}, i.e. binary vectors of length n and parity b1. Similarly for

matrices, we de�ne the �nite sets

Fn×2n
2,b1

=
{
H = (In rot (h)) ∈ Fn×2n

2 s.t. h ∈ Fn
2,b1

}
, and

F2n×3n
2,b1,b2

=

{
H =

(
In 0 rot(h1)
0 In rot(h2)

)
∈ F2n×3n

2 s.t. h1 ∈ Fn
2,b1

and h2 ∈ Fn
2,b2

}
.

This is pure technicality and has almost no e�ect on the parameters of our proposal as it
results in a security loss of at most 1 bit. Meanwhile, this permits to discard attacks such
as [17, 23, 24]1.

De�nition 2.1.14 (2-QCSD-P Distribution). Let n, w, b1 be positive integers and
b2 = w + b1 × w mod 2. The 2-Quasi-Cyclic Syndrome Decoding with Parity Distri-

bution 2-QCSD-P(n,w, b1, b2) samples H ∈ Fn×2n
2,b1

and x = (x1,x2)
$← F2n

2 such that

ω(x1) = ω(x2) = w, compute y⊤ = Hx⊤ and outputs (H,y) ∈ Fn×2n
2,b1

× Fn
2,b2

.

De�nition 2.1.15 (2-DQCSD-P Problem). Let n, w, b1 be positive integers and b2 =
w+ b1 ×w mod 2. Given (H,y) ∈ Fn×2n

2,b1
× Fn

2,b2
, the Decisional 2-Quasi-Cyclic Syndrome

Decoding with Parity Problem 2-DQCSD-P(n,w, b1, b2) asks to decide with non-negligible
advantage whether (H,y) came from the 2-QCSD-P(n,w, b1, b2) distribution or the uniform
distribution over Fn×2n

2,b1
× Fn

2,b2
.

In order to thwart structural attacks, we need to work with a code of primitive prime
length n, so that Xn−1 has only two irreducible factors mod q. However for the considered
parameters and codes (concatenated Reed-Muller and Reed-Solomon codes), the encoding of
a messagem has size n1n2 which is obviously not prime. Therefore we use as ambient length
n which is the �rst primitive prime greater than n1n2 and truncate the last ℓ = n − n1n2

bits wherever needed. This results in a slightly modi�ed version of the 3-DQCSD problem
that we de�ne hereafter.

De�nition 2.1.16 (3-QCSD-PT Distribution). Let n, w, b1, b2, ℓ be positive integers and
b3 = w+b1×w mod 2. The 3-Quasi-Cyclic Syndrome Decoding with Parity and Truncation

Distribution 3-QCSD-PT (n,w, b1, b2, b3, ℓ) samples H
$← F2n×3n

2,b1,b2
and x = (x1,x2,x3)

$←
F3n
2 such that ω(x1) = ω(x2) = ω(x3) = w, computes y⊤ = Hx⊤ where y = (y1,y2) and

outputs (H, (y1, truncate(y2, ℓ))) ∈ F2n×3n
2,b1,b2

× (Fn
2,b3
× Fn−ℓ

2).
1The authors chose to use a parity version of the 2-DQCSD problem rather than a variable weight version

as suggested in [24] for e�ciency considerations.

14

De�nition 2.1.17 (3-QCSD-PT Problem). Let n, w, b1, b2, ℓ be positive integers
and b3 = w + b1 × w mod 2. Given (H, (y1,y2)) ∈ F2n×3n

2,b1,b2
× (Fn

2,b3
× Fn−ℓ

2),
the Decisional 3-Quasi-Cyclic Syndrome Decoding with Parity and Truncation Prob-
lem 3-DQCSD-PT(n,w, b1, b2, b3, ℓ) asks to decide with non-negligible advantage whether
(H, (y1,y2)) came from the 3-QCSD-PT (n,w, b1, b2, b3, ℓ) distribution or the uniform dis-
tribution over F2n×3n

2,b1,b2
× (Fn

2,b3
× Fn−ℓ

2).

Regarding the security of the 3-DQCSD-PT problem with parity and truncation, when-
ever the number of truncated positions is very small compared to the block length n, the
impact on the security is negligible with respect to the 3-DQCSD problem since the best
attack is the ISD attack. Moreover since the truncation breaks the quasi-cyclicity, it also
weaknesses the advantage of quasi-cyclicity for the attacker.

2.2 Encryption and security

Encryption Scheme. A public key encryption scheme PKE is a tuple of four polynomial
time algorithms (Setup,KeyGen,Encrypt,Decrypt):

� Setup(1λ), where λ is the security parameter, generates the global parameters param
of the scheme;

� KeyGen(param) outputs a pair of keys, a (public) encryption key pk and a (private)
decryption key sk;

� Encrypt(pk,m, θ) outputs a ciphertext c, on the message m, under the encryption key
pk, with the randomness θ. We also use Encrypt(pk,m) for the sake of clarity;

� Decrypt(sk, c) outputs the plaintext m, encrypted in the ciphertext c or ⊥.
Such an encryption scheme has to satisfy both Correctness and Indistinguishability under
Chosen Plaintext Attack (IND-CPA) security properties.

Correctness: For every λ, every param← Setup(1λ), every pair of keys (pk, sk) generated
by KeyGen, every message m, we should have Pr[Decrypt(sk,Encrypt(pk,m, θ)) = m] =
1 − negl(λ) for negl(·) a negligible function, where the probability is taken over varying
randomness θ.

IND-CPA [18]: This notion formalized by the game depicted in Fig. 1, states that an
adversary should not be able to e�ciently guess which plaintext has been encrypted even
if he knows it is one among two plaintexts of his choice.

In the following, we denote by |A| the running time of an adversary A. The global
advantage for polynomial time adversaries running in time less than t is:

AdvIND-CPA
PKE (t) = max

|A|≤t
AdvIND-CPA

PKE (A), (8)

where AdvIND-CPA
PKE (A) is the advantage the adversary A has in winning game Expind−b

PKE (A):

AdvIND-CPA
PKE (A) =

∣∣Pr[Expind−1
PKE (A) = 1]− Pr[Expind−0

PKE (A) = 1]
∣∣ . (9)

15

Expind−b
PKE (A)

1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param)
3. (m0,m1)← ACHOOSE(pk)
4. c← Encrypt(pk,mb, θ)
5. b′ ← AGUESS(pk, c)
6. RETURN b′

Figure 1: Game for the IND-CPA security of an asymmetric encryption scheme.

2.3 Presentation of the scheme

HQC is an IND-CCA2 Key Encapsulation Mechanism (KEM) build from an IND-CPA
PKE construction on top of which the HHK transform [20] is performed. Parameter sets
can be found in Section 2.7. We further useM to denote the message space. Let w be a
positive integer, we denote by Rω := {v ∈ R such that ω(v) = w} the set of vectors having
Hamming weight w.

2.3.1 Public key encryption version (HQC.PKE)

Presentation of the scheme. HQC uses two types of codes: a decodable [n, k] code C,
generated by G ∈ Fk×n

2 and which can correct at least ∆ errors via an e�cient algorithm
C.Decode(·); and a random double-circulant [2n, n] code, of parity-check matrix (1,h). The
four polynomial-time algorithms constituting our scheme are depicted in Fig. 2.

� Setup(1λ): outputs the global parameters param = (n, k,∆, w, wr, we, ℓ).

� KeyGen(param): samples h
$← R, the generator matrix G ∈ Fk×n

2 of C, (x,y) $←
Rw ×Rw, sets sk = (x,y) and pk = (h, s = x+ h · y), and returns (pk, sk).

� Encrypt(pk,m): generates e
$← Rwe , r = (r1, r2)

$← Rwr ×Rwr , sets u = r1+h · r2
and v = truncate(mG+ s · r2 + e, ℓ), returns c = (u,v).

� Decrypt(sk, c): returns C.Decode(v − u · y).

Figure 2: Description of our proposal HQC.PKE.

Notice that the generator matrix G of the code C is publicly known, so the security of
the scheme and the ability to decrypt do not rely on the knowledge of the error correcting
code C being used.
C is instantiated using concatenated Reed-Muller and Reed-Solomon codes: see Sec-

tion 2.5 for more details. Furthermore, we will have G ∈ Fn1n2
2 and h ∈ Fn

2 , with n the

16

smallest primitive prime greater than n1n2. All computations are made in the ambient
space Fn

2 and the remaining ℓ = n− n1n2 bits are truncated whenever required.
In the secret key (x,y) is represented as (seed1) where seed1 is used to generate x

and y. The public key pk = (h, s) is represented as pk = (seed2, s) where seed2 is used to
generate h.

Correctness. The correctness of our encryption scheme clearly relies on the decoding
capability of the code C. Speci�cally, assuming C.Decode correctly decodes v − u · y, we
have:

Decrypt (sk,Encrypt (pk,m)) = m. (10)

And C.Decode correctly decodes v − u · y whenever

ω (s · r2 − u · y + e) ≤ ∆ (11)

ω ((x+ h · y) · r2 − (r1 + h · r2) · y + e) ≤ ∆ (12)

ω (x · r2 − r1 · y + e) ≤ ∆ (13)

In order to provide an upper bound on the decryption failure probability, an analysis of the
distribution of the error vector e′ = x · r2 − r1 · y + e is provided in Section 2.4.

2.3.2 A Key Encapsulation Mechanism (HQC.KEM)

Let G and K be hash functions. Following the HHK framework [20], we construct the
HQC.KEM IND-CCA2-secure key encapsulation mechanism (see Figure 3) from the IND-
CPA-secure public-key encryption scheme described in Figure 2. More details regarding
the security proof is provided in section 5.2.

2.4 Analysis of the error vector distribution for Hamming distance

In this section we provide a more precise analysis of the error distribution approximation
compared to the Round 2 submission. This analysis is taken from [4]. We �rst compute
exactly the probability distribution of each �xed coordinate e′k of the error vector

e′ = x · r2 − r1 · y + e = (e′0, . . . e
′
n−1).

We obtain that every coordinate e′k is Bernoulli distributed with parameter p∗ = P [e′k = 1]
given by Proposition 2.4.2.

To compute decoding error probabilities, we will then need the probability distribution
of the weight of the error vector e′ restricted to given sets of coordinates that correspond
to codeword supports. We will make the simplifying assumption that the coordinates e′k
of e′ are independent variables, which will let us work with the binomial distribution of
parameter p∗ for the weight distributions of e′. In other words we modelize the error vector
as a binary symmetric channel with parameters p∗. This working assumption is justi�ed by
remarking that, in the high weight regime relevant to us, since the component vectors x,y, e

17

� Setup(1λ): as before, except that k will be the length of the shared key being
exchanged.

� KeyGen(param): samples h
$← R, σ $← Fk

2, the generator matrix G ∈ Fk×n
2 of C,

sk = (x,y, σ)
$← Rw ×Rw × Fk

2, sets pk = (h, s = x+ h · y), and returns (pk, sk).

� Encapsulate(pk): generates m
$← Fk

2, salt
$← F128

2 . Using the �rst 32 bytes of
the public key pk, derive the randomness θ ← G(m∥firstBytes(pk, 32)∥salt) and
use θ to generates (e, r1, r2) such that ω(e) = we and ω(r1) = ω(r2) = wr, sets
u = r1 + h · r2 and v = truncate(mG + s · r2 + e, ℓ), sets c = (u,v). Computes
K ← K(m, c), and return (K, c, salt).

� Decapsulate(sk, c, salt): Decrypt m′ ← Decrypt(sk, c), compute the randomness
θ′ ← G(m′∥firstBytes(pk, 32)∥salt), and (re-)encrypt m′ by using θ′ to generates
(e′, r′1, r

′
2) such that ω(e′) = we and ω(r′1) = ω(r′2) = wr, sets u

′ = r′1 + h · r′2 and
v′ = truncate(m′G + s · r′2 + e′, ℓ), sets c′ = (u′,v′). If m′ = ⊥ or c ̸= c′ then
K ← K(σ, c). Otherwise, K ← K(m, c).

Figure 3: Description of our proposal HQC.KEM derived from Figures 2, 6 and 7.

have �xed weights, the probability that a given coordinate e′k takes the value 1 conditioned
on abnormally many others equalling 1 can realistically only be ≤ p∗. We support this
modeling of the otherwise intractable weight distribution of e′ by extensive simulations:
these back up our assumption that our computations of decoding error probabilities and
DFRs can only be upper bounds on their real values.

The vectors x,y, r1, r2, e have been taken uniformly random and independently chosen
among vectors of weight w, wr and we. We �rst evaluate the distributions of the products
x · r2 and r1 · y.

Proposition 2.4.1. Let x = (x0, . . . xn−1) be a random vector chosen uniformly among all
binary vectors of weight w and let r = (r0, . . . , rn−1) be a random vector chosen uniformly
among all vectors of weight wr and independently of x. Then, denoting z = x · r, we have
that for every k ∈ {0, . . . n − 1}, the k-th coordinate zk of z is Bernoulli distributed with
parameter p̃ = P (zk = 1) equal to:

p̃ =
1(

n
w

)(
n
wr

) ∑
1⩽ℓ⩽min(w,wr)

ℓ odd

Cℓ

where Cℓ =
(
n
ℓ

)(
n−ℓ
w−ℓ

)(
n−w
wr−ℓ

)
.

Proof. The total number of ordered pairs (x, r) is
(
n
w

)(
n
wr

)
. Among those, we need to count

18

how many are such that zk = 1. We note that

zk =
∑

i+j=k mod n
0≤i,j≤n−1

xirj.

We need therefore to count the number of couples (x, r) such that we have xirk−i = 1 an
odd number of times when i ranges over {0, . . . , n − 1} (and k − i is understood modulo
n). Let us count the number Cℓ of couples (x, r) such that xirk−i = 1 exactly ℓ times. For
ℓ > min(w,wr) we clearly have Cℓ = 0. For ℓ ≤ min(w,wr) we have

(
n
ℓ

)
choices for the

set of coordinates i such that xi = rk−i = 1, then
(
n−ℓ
w−ℓ

)
remaining choices for the set of

coordinates i such that xi = 1 and rk−i = 0, and �nally
(
n−w
wr−ℓ

)
remaining choices for the set

of coordinates i such that xi = 0 and rk−i = 1. Hence Cℓ =
(
n
ℓ

)(
n−ℓ
w−ℓ

)(
n−w
wr−ℓ

)
. The formula

for p̃ follows.
Let x,y (resp. r1, r2) be independent random vectors chosen uniformly among all binary

vectors of weight w (resp. wr).
By independence of (x, r2) with (y, r1), the k-th coordinates of x · r2 and of r1 · y are

independent, and they are Bernoulli distributed with parameter p̃ by Proposition 2.4.1.
Therefore their modulo 2 sum t = x · r2 − r1 · y is Bernoulli distributed with{

Pr[tk = 1] = 2p̃(1− p̃),

Pr[tk = 0] = (1− p̃)2 + p̃2.
(14)

Finally, by adding modulo 2 coordinatewise the two independent vectors e and t, we
obtain the distribution of the coordinates of the error vector e′ = x · r2 − r1 · y + e given
by the following proposition:

Proposition 2.4.2. Let x,y,r1, r2, e be independent random vectors with uniform distribu-
tions among vectors of �xed weight w for x,y, among vectors of weight wr for r1, r2, and
among vectors of weight we for e. Let e

′ = x · r2− r1 ·y+ e = (e′0, . . . , e
′
n−1). Then for any

k = 0 . . . n− 1, the coordinate e′k has distribution:{
Pr[e′k = 1] = 2p̃(1− p̃)(1− we

n
) + ((1− p̃)2 + p̃2) we

n
,

Pr[e′k = 0] = ((1− p̃)2 + p̃2) (1− we

n
) + 2p̃(1− p̃)we

n
.

(15)

Proposition 2.4.2 gives us the probability that a coordinate of the error vector e′ is
1. In our simulations, which occur in the regime w = α

√
n with constant α, we make

the simplifying assumption that the coordinates of e′ are independent, meaning that the
weight of e′ follows a binomial distribution of parameter p⋆, where p⋆ is de�ned as in Eq.
(15): p⋆ = 2p̃(1 − p̃)(1 − we

n
) + ((1− p̃)2 + p̃2) we

n
. This approximation will give us, for

0 ≤ d ≤ min(2× w × wr + we, n),

Pr[ω(e′) = d] =

(
n

d

)
(p⋆)d(1− p⋆)(n−d). (16)

19

Supporting elements for our modelization: we give in Fig. 4 simulations of the
distribution of the weight of the error vector together with the distribution of the associated
binomial law of parameters p⋆. These simulations show that error vectors are more likely to
have a weight close to the mean than predicted by the binomial distribution, and that on the
contrary the error is less likely to be of large weight than if it were binomially distributed.
This is for instance illustrated on the parameter set corresponding to real parameters used
for 128 bits security. For cryptographic purposes we are mainly interested by very small
DFR and large weight occurrences which are more likely to induce decoding errors. These
tables show that the probability of obtaining a large weight is close but smaller for the
error weight distribution of e′ rather than for the binomial approximation. This supports
our modelization and the fact that computing the decoding failure probability with this
binomial approximation permits to obtain an upper bound on the real DFR. This will be
con�rmed in the next sections by simulations with real weight parameters (but smaller
lengths).

Examples of simulations. We consider a parameter set that corresponds to cryptographic
parameters and for which we simulate the error distribution versus the binomial approxi-
mation together with the probability of obtaining large error weights. We computed vectors
of length n and then truncated the last l = n − n1n2 bits before measuring the Hamming
weight of the vectors.

Parameter set w we = wr n n1n2 p⋆

hqc-128 66 75 17669 17664 0.3398

Simulation results
Simulation results are shown �gure 4. We computed the weights such that 0.1%, 0.01%

and 0.001% of the vectors are of weight greater than this value, to study how often extreme
weight values occur. Results are presented table 2.

0.1% 0.01% 0.001% 0.0001%

Error vectors 6169 6203 6232 6257
Binomial approximation 6197 6237 6272 6301

Table 2: Simulated probabilities of large weights for hqc-128 for the distributions of the
error vector and the binomial approximation

20

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 5800 5850 5900 5950 6000 6050 6100 6150 6200

O
c
c
u
re

n
c
e
s

Weight

HQC simulation
Binomial distribution

Figure 4: Comparison between error e′ generated using hqc-128 parameters and its binomial
approximation.

2.5 Decoding with concatenated Reed-Muller and Reed-Solomon

codes

In this section taken from [4] we propose to consider a new decoding algorithm based on
Reed-Muller and Reed-Solomon concatenated codes.

2.5.1 De�nitions

De�nition 2.5.1 (Concatenated codes). A concatenated code consists of an external code
[ne, ke, de] over Fq and an internal code [ni, ki, di] over F2, with q = 2ki. We use a bi-
jection between elements of Fq and the words of the internal code, this way we obtain a
transformation:

Fne
q → FN

2

where N = neni. The external code is thus transformed into a binary code of parameters
[N = neni, K = keki, D ⩾ dedi].

For the external code, we chose a Reed-Solomon code of dimension 32 over F256 and,
for the internal code, we chose the Reed-Muller code [128, 8, 64] that we are going to du-
plicate 3 or 5 times (i.e duplicating each bit to obtain codes of parameters [384, 8, 192] and
[640, 8, 320]).

21

We perform maximum likelihood decoding on the internal code. Doing that we obtain
a vector of Fne

q that we then decode using an algebraic decoder for the Reed-Solomon code.

2.5.2 Reed-Solomon codes

Let p be a prime number and q is any power of p. Following [22], a Reed-Solomon code
with symbols in Fqp has the following parameters:

� Block length n = q − 1

� Number of parity-check digits n− k = 2δ, with δ, the correcting capacity of the code
and k the number of information bits

� Minimum distance dmin = 2δ + 1

We denote this code by RS[n, k, dmin. Let α be a primitive element in F2m , the generator
polynomial g(x) of the RS[n, k, δ] code is given by:

g(x) = (x+ α)(x+ α2) · · · (x+ α2δ)

Depending on HQC parameters, we construct shortened Reed-Solomon (RS-S1, RS-S2
and RS-S3) codes such that k is equal to 16, 24 or 32 from the following RS codes RS-1,
RS-2 and RS-3 (codes from [22]).

Code n k δ

RS-1 255 225 15
RS-2 255 223 16
RS-3 255 197 29

RS-S1 46 16 15
RS-S2 56 24 16
RS-S3 90 32 29

Table 3: Original and shortened Reed-Solomon codes.

The shortened codes are obtained by subtracting 209 from the parameters n and k of
the code RS-1 and subtracting 199 from the parameters n and k of the code RS-2 and by
subtracting 165 from the parameters n and k of the code RS-3. Notice that shortening
the Reed-Solomon code does not a�ect the correcting capacity, thus we have the following
shortened Reed-Solomon codes :

� RS-S1[46 = 255− 209, 16 = 225− 209, 31]

� RS-S2[56 = 255− 199, 24 = 223− 199, 33]

� RS-S3[90 = 255− 165, 32 = 197− 165, 49]

22

In our case, we will be working in F2m with m = 8. To do so, we use the primitive
polynomial 1 + x2 + x3 + x4 + x8 of degree 8 to build this �eld (polynomial from [22]). We
denote by g1(x), g2(x) and g3(x) the generator polynomials of RS-S1, RS-S2 and RS-S3
respectively, which are equal to the generator polynomials of Reed-Solomon codes RS-1,
RS-2 and RS-3 respectively. We precomputed the generator polynomials g1(x), g2(x) and
g3(x) of the code RS-S1, RS-S2 and RS-S3 and we included them in the �le parameters.h.
One can use the functions provided in the �le reed_solomon.h to reconstruct the generator
polynomials for those codes.

Generator polynomial of RS-1. g1(x) = 9 + 69x + 153x2 + 116x3 + 176x4 + 117x5 +

111x6+75x7+73x8+233x9+242x10+233x11+65x12+210x13+21x14+139x15+103x16+
173x17 + 67x18 + 118x19 + 105x20 + 210x21 + 174x22 + 110x23 + 74x24 + 69x25 + 228x26 +
82x27 + 255x28 + 181x29 + x30.

Generator polynomial of RS-2. g2(x) = 45 + 216x + 239x2 + 24x3 + 253x4 + 104x5 +

27x6+40x7+107x8+50x9+163x10+210x11+227x12+134x13+224x14+158x15+119x16+
13x17+158x18+1x19+238x20+164x21+82x22+43x23+15x24+232x25+246x26+142x27+
50x28 + 189x29 + 29x30 + 232x31 + x32.

Generator polynomial of RS-3. g3(x) = 49 + 167x + 49x2 + 39x3 + 200x4 + 121x5 +

124x6 +91x7 +240x8 +63x9 +148x10 +71x11 +150x12 +123x13 +87x14 +101x15 +32x16 +
215x17 + 159x18 + 71x19 + 201x20 + 115x21 + 97x22 + 210x23 + 186x24 + 183x25 + 141x26 +
217x27 + 123x28 + 12x29 + 31x30 + 243x31 + 180x32 + 219x33 + 152x34 + 239x35 + 99x36 +
141x37+4x38+246x39+191x40+144x41+8x42+232x43+47x44+27x45+141x46+178x47+
130x48 +64x49 +124x50 +47x51 +39x52 +188x53 +216x54 +48x55 +199x56 +187x57 + x58.

2.5.3 Encoding shortened Reed-Solomon codes

In the following we present the encoding of Reed-Solomon codes which can also be used
to encode shortened Reed-Solomon codes. We denote by u(x) = u0 + · · · + uk−1x

k−1 the
polynomial corresponding to the message u = (u0, · · · , uk−1) to be encoded and g(x) the
generator polynomial. We use the systematic form of encoding where the rightmost k
elements of the code word polynomial are the message bits and the leftmost n− k bits are
the parity-check bits. Following [22], the code word is given by c(x) = b(x)+xn−ku(x), where
b(x) is the reminder of the division of the polynomial xn−ku(x) by g(x). In consequence,
the encoding in systematic form consists of three steps :

1. Multiply the message u(x) by xn−k.

2. Compute the remainder b(x) by dividing xn−ku(x) by the generator polynomial g(x).

3. Combine b(x) and xn−ku(x) to obtain the code polynomial c(x) = b(x) + xn−ku(x).

23

2.5.4 Decoding shortened Reed-Solomon codes

The decoding of classical Reed-Solomon codes can be used to decode shortened Reed-
Solomon codes. For sake of simplicity, we will detail the process of decoding classical Reed-
Solomon codes. Following [22], consider the Reed-Solomon code de�ned by [n, k, dmin], with
n = 2m−1 (m ≥ 0 of positive integer) and suppose that a codeword v(x) = v0+v1x+ · · ·+
vn−1x

n−1 is transmitted. We denote r(x) = r0 + r1x + · · · + rn−1x
n−1 the received word,

potentially altered by some errors.
We denote the error polynomial e(x) = e0 + e1x+ · · ·+ en−1x

n−1, meaning that there is
an error in position i whenever ei ̸= 0. Hence, r(x) = v(x) + e(x).

We de�ne the set of syndromes S1, S2, · · · , S2δ as Si = r(αi), with α being a primitive
element in F2m . We have that r(αi) = e(αi), since v(αi) = 0 (v is a codeword). Suppose
that e(x) has t errors at locations j1, · · · , jt, i.e. e(x) = ej1x

j1 + ej2x
j2 + · · · + ejtx

jt . We
obtain the following set of equations, where αj1 , αj2 , · · · , αjt are unknown:

S1 = ej1α
j1 + ej2α

j2 + · · ·+ ejtα
jt

S2 = ej1(α
j1)2 + ej2(α

j2)2 + · · ·+ ejt(α
jt)2

S3 = ej1(α
j1)3 + ej2(α

j2)3 + · · ·+ ejt(α
jt)3

...
S2δ = ej1(α

j1)2δ + ej2(α
j2)2δ + · · ·+ ejt(α

jt)2δ

The goal of a Reed-Solomon decoding algorithm is to solve this system of equations.
We de�ne the error location numbers by βi = αji , which indicate the location of the errors.
The equations above, can be expressed as follows:

S1 = ej1β1 + ej2β2 + · · ·+ ejtβt

S2 = ej1β
2
1 + ej2β

2
2 + · · ·+ ejtβ

2
t

S3 = ej1β
3
1 + ej2β

3
2 + · · ·+ ejtβ

3
t

...
S2δ = ej1β

2δ
1 + ej2β

2δ
2 + · · ·+ ejtβ

2δ
t

we de�ne the error location polynomial as:

σ(x) = (1 + β1x)(1 + β2x) · · · (1 + βtx)

= 1 + σ1x+ σ2x
2 + · · ·+ σtx

t

We can see that the roots of σ(x) are β−1
1 , β−1

2 , · · · , β−1
t which are the inverses of the

error location numbers. After retrieving the coe�cients of σ(x), we can compute the error
values. Let

Z(x) = 1 + (S1 + σ1)x+ (S2 + σ1S1 + σ2)x
2 + · · ·+ (St + σ1St−1 + σ2St−2 + · · ·+ σt)x

t

The error value at location βl is given by [6]

24

ejl =
Z(β−1

l)
t∏

i=1
i ̸=l

(1 + βiβ
−1
l)

The decoding is completed by computing r(x)− e(x).
We can summarize the decoding procedure by the following steps:

1. The �rst step is the computation of the 2δ syndromes using the received polynomial.
The syndromes are computed in a classical way by evaluating r(αi) for each value of
i.

2. The second step is the computation of the error-location polynomial σ(x) from the
2δ syndromes computed in the �rst step. Here we use Berlekamp's algorithm [22].

3. The third step is to �nd the error-location numbers by calculating the roots of the
polynomial σ(x) and returning their inverses. We implement this step with an additive
Fast Fourier Transform algorithm from [16].

4. The fourth step is the computation of the polynomial Z(x).

5. The �fth step is the computation of the error values.

6. The sixth step is the correction of errors in the received polynomial.

2.5.5 Duplicated Reed-Muller codes

For any positive integers m and r with 0 ≤ r ≤ m, there exists a binary rth order Reed-
Muller code denoted by RM(r,m) with the following parameters:

� Code length n = 2m

� Dimension k =
∑r

i=0

(
m
i

)
� Minimum distance dmin = 2m−r

HQC uses duplicated Reed-Muller codes. In particular, we are using �rst-order Reed-
Muller denoted RM(1, 7) which is the binary code [128, 8, 64].

Decoding the internal Reed-Muller code:
The Reed-Muller code of order 1 can be decoded using a fast Hadamard transform (see

chapter 14 of MacWilliams and Sloane for example). The algorithm needs to be slightly
adapted when decoding duplicated codes. For example, if the Reed-Muller is duplicated
three times, we create the function F : F3

2 → {3, 1,−1,−3} where we started with trans-
forming each block of three bits x1x2x3 of the received vector in

25

(−1)x1 + (−1)x2 + (−1)x3

We then apply the Hadamard transform to the function F . We take the maximum
value in F̂ and x ∈ F3

2 that maximizes the value of |F̂ |. If F̂ (x) is positive, then the
closest codeword is xG where G is the generator matrix of the Hadamard code (without
the all-one-vector). If F̂ (x) is negative, then we need to add the all-one-vector to it.

2.5.6 Encoding Duplicated Reed-Muller codes

Following [26], the encoding is done in classical way by using a matrix vector multiplication.
The codeword is then duplicated depending on the used parameter (see Table 4).

Scheme Reed-Muller Code Multiplicity Duplicated Reed-Muller Code

hqc-128 [128, 8, 64] 3 [384, 8, 192]
hqc-192 [128, 8, 64] 5 [640, 8, 320]
hqc-256 [128, 8, 64] 5 [640, 8, 320]

Table 4: Duplicated Reed-Muller codes.

2.5.7 Decoding Duplicated Reed-Muller codes

Following [26] (Chapter 14), the decoding of duplicated Reed-Muller codes is done in three
steps:

1. The �rst step is the computation of the function F described in Section 2.5.5. We
apply F on the received codeword. We give details about how this process is done
where the multiplicity is equal to 2. Let v a duplicated Reed-Muller codeword, it can
be seen as v = (a1b1, · · · , an2bn2) where each ai, bi has 128 bits size (ai = (ai0 , · · · , ai128)
and bi = (bi0 , · · · , bi128)). The transformation F is applied to each element in v as
follows ((−1)ai0 + (−1)bi0 , · · · , (−1)ai128 + (−1)bi128). The cases when multiplicity is
equal to 4 follow a similar process.

2. The second step is the computation of Hadamard transform which is the �rst phase
of the Green machine.

3. The third step is the computation of the location of the highest value on the output
of the previous step. This is the second phase of the Green machine. When the peak
is positive we add all-one-vector and if there are two identical peaks, the peak with
smallest value in the lowest 7 bits it taken.

26

2.5.8 Decryption failure rate analysis

In this section we analyze the DFR of the concatenated codes. We use the binomial law
approximation p∗ of the error vector of Section 2.4.

It is only possible to obtain an exact decoding probability formula for the Reed-Solomon
codes as for Reed-Muller codes we consider a maximum-likelihood decoding for which there
is no exact formula. We provide in the following proposition a lower bound on the decoding
probability in that case.

Proposition 2.5.1. [Simple Upper Bound for the DFR of the internal code]
Let p be the transition probability of the binary symmetric channel. Then the DFR of a

duplicated Reed-Muller code of dimension 8 and minimal distance di can be upper bounded
by:

pi = 255

di∑
j=di/2

(
di
j

)
pj(1− p)di−j

Proof. For any linear code C of length n, when transmitting a codeword c, the probability
that the channel makes the received word y at least as close to a word c′ = c+ x as c (for
x a non-zero word of C and ω(x) the weight of x) is:∑

j⩾ω(x)/2

(
ω(x)

j

)
pj(1− p)n−j.

By the union bound applied on the di�erent non-zero codewords x of C, we obtain that
the probability of a decryption failure can thus be upper bounded by:∑

x∈C,x ̸=0

∑
j⩾ω(x)/2

(
ω(x)

j

)
pj(1− p)n−j

There are 255 non-zero words in a [128,8,64] Reed-Muller code, 254 of weight 64 and
one of weight 128. The contribution of the weight 128 vector is smaller than the weight 64
vectors, hence by applying the previous bound to duplicated Reed-Muller codes we obtain
the result.

Better upper bound on the decoding error probability for the internal code.
The previous simple bound pessimistically assumes that decoding fails when more than one
codeword minimizes the distance to the received vector. The following bound improves the
previous one by taking into account the fact that decoding can still succeed with probability
1/2 when exactly two codewords minimize the distance to the received vector.

Proposition 2.5.2. [Improved Upper Bound for the DFR of the internal code]
Let p be the transition probability of the binary symmetric channel. Then the DFR of a

Reed-Muller code of dimension 8 and minimal distance di can be upper bounded by:

27

pi =
n∑

w=di/2

Awp
w(1− p)n−w

where

Aw = min

[(
n

w

)
,
1

2
255

(
di
di/2

)(
di

w − di/2

)
+ 255

di∑
j=di/2+1

(
di
j

)(
di

w − j

)
+

1

2

(
255

2

) di/2∑
j=0

(
di/2

j

)3(
di/2

w − di + j

)]
.

Proof. Let E be the decoding error event. Let e be the error vector.

� Let A be the event where the closest non-zero codeword c to the error is such that
d(e, c) = d(e,0) = ω(e).

� Let B be the event where the closest non-zero codeword c to the error vector is such
that d(e, c) < ω(e).

� Let A′ ⊂ A be the event where the closest non-zero codeword c to the error vector
is such that d(e, c) = ω(e) and such a vector is unique, meaning that for every
c′ ∈ C, c′ ̸= c, c′ ̸= 0, we have d(e, c′) > ω(e).

� Finally, let A′′ be the event that is the complement of A′ in A, meaning the event
where the closest non-zero codeword c to the error is at distance |e| from e, and there
exists at least one codeword c′, c′ ̸= c, c′ ̸= 0, such that d(e, c′) = d(e, c) = ω(e).

The probability space is partitioned as Ω = A ∪ B ∪ C = A′ ∪ A′′ ∪ B ∪ C, where C
is the complement of A ∪ B. When C occurs, the decoder always decodes correctly, i.e.
P (E|C) = 0. We therefore write:

P (E) = P (E|A′)P (A′) + P (E|A′′)P (A′′) + P (E|B)P (B)

When the event A′ occurs, the decoder chooses at random between the two closest
codewords and is correct with probability 1/2, i.e. P (E|A′) = 1/2. We have P (E|B) = 1
and writing P (E|A′′) ⩽ 1, we have:

P (Ew) ⩽
1

2
P (A′

w) + P (A′′
w) + P (Bw)

=
1

2
(P (A′

w) + P (A′′
w)) +

1

2
P (A′′

w) + P (Bw)

P (Ew) ⩽
1

2
P (Aw) +

1

2
P (A′′

w) + P (Bw) (17)

28

where for X = A,A′, A′′, E, the event Xw signi�es the intersection of the event X with the
event �ω(e) = w�.

Now we have the straightforward union bounds:

P (Bw) ⩽ 255

di∑
j=di/2+1

(
di
j

)(
di

w − j

)
pw(1− p)n−w (18)

with n = 2di the length of the inner code, and where we use the convention that a binomial
coe�cient

(
ℓ
k

)
= 0 whenever k < 0 or k > ℓ.

P (Aw) ⩽ 255

(
di
di/2

)(
di

w − di/2

)
pw(1− p)n−w (19)

and it remains to �nd an upper bound on P (A′′).
We have:

P (A′′) ⩽
∑
c,c′

P (Ac,c′)

where the sum is over pairs of distinct non-zero codewords and where:

Ac,c′ = {d(e, c) = d(e, c′) = ω(e)}
This event is equivalent to the error meeting the supports of c and c′ on exactly half

their coordinates. All codewords except the all-one vector have weight di, and any two
codewords of weight di either have non-intersecting supports or intersect in exactly d/2
positions. P (Ac,c′) is largest when c and c′ have weight d and non-zero intersection. In this
case we have:

P (Aw
c,c′) =

di/2∑
j=0

(
di/2

j

)3(
di/2

w − di + j

)
pw(1− p)n−w.

Hence

P (A′′
w) ⩽

∑
c,c′

P (Ac,c′) ⩽

(
255

2

) di/2∑
j=0

(
di/2

j

)3(
di/2

w − di + j

)
pw(1− p)n−w. (20)

Plugging 19, 18 and 20 into 17 we obtain the result.

Remark 2.2. The previous formula permits to obtain a lower bound on the decoding prob-
ability; when the error rate gets smaller the bound becomes closer to the real value of the
decoding probability. For cryptographic parameters the approximation is less precise, which
means that the DFR obtained will be conservative compared to what happens in practice. We
performed simulations to compare the real decryption failure rate with the theoretical one
from proposition 2.5.1 for [512, 8, 256] and [640, 8, 320] duplicated Reed-Muller codes using
p⋆ values from actual parameters. Simulation results are presented table 5.

29

Security level p⋆ Reed-Muller code DFR from 2.5.2 Observed DFR
128 0.3398 [384, 8, 192] -10.79 -10.96
192 0.3618 [640, 8, 320] -14.14 -14.39
256 0.3725 [640, 8, 320] -11.30 -11.48

Table 5: Comparison between the observed Decryption Failure Rate and the formula from
proposition 2.5.1. Results are presented as log2(DFR).

From the previous lower bound pi on the probability decoding of the Reed-Muller codes
we deduce the decryption failure rate for these codes:

Theorem 2.3. Decryption Failure Rate of the concatenated code Using a Reed-Solomon
code [ne, ke, de]F256 as the external code, the DFR of the concatenated code can be upper
bounded by:

ne∑
l=δe+1

(
ne

l

)
pli(1− pi)

ne−l

Where de = 2δe + 1 and pi is de�ned as in proposition 2.5.1.

2.5.9 Simulation results

In Fig. 5, we tested the Decryption Failure rate of the concatenated codes against both
symmetric binary channels and HQC vectors, and compared the results with the theoretical
value obtained using proposition 2.5.1 and 2.3.

2.6 Representation of objects

Vectors. Elements of Fn
2 , F

n1n2
2 and Fk

2 are represented as binary arrays.

Seeds. The considered seed-expander is based on the SHAKE256 function. It is initialized
with a byte string of length 40 which are used as the seed.

2.6.1 Keys and ciphertext representation

In the secret key (x,y) is represented as (seed1) where seed1 is used to generate x and
y. The public key pk = (h, s) is represented as pk = (seed2, s) where seed2 is used
to generate h. The ciphertext c is represented as (u,v, salt) where salt is generated using
SHAKE256-512. The secret key has size 40+⌈k/8⌉ bytes, the public key has size 40+⌈n/8⌉
bytes and the ciphertext has size ⌈n/8⌉+ ⌈n1n2/8⌉ + 16 bytes.

30

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 32 32.5 33 33.5 34 34.5 35 35.5 36

D
F

R

NRS

DFR comparison

Theoretical
Binomial

HQC

Figure 5: Comparison between the Decryption Failure Rate from 2.3 (Theoretical) and the
actual Decryption Failure Rate of concatenated codes against approximation by a binary
symmetric channel (Binomial) and against HQC error vectors (HQC). Parameters simulated
are derived from those of HQC for 128 security bits: w = 66, wr = we = 75, a [384, 8, 192]
duplicated Reed-Muller code for internal code and a [NRS, 16] Reed-Solomon code for
external code.

2.6.2 Randomness and vector generation

Random bytes are generated using the SHAKE256 based shake_prng or seedexpander

functions. The shake_prng function is used to generate seed1, seed2, m as well as salt.
The seedexpander function is used to generate x, y (using seed1 as seed), h (using seed2
as seed) and r1, r2, e (using θ as seed). For key generation, the randomized access is done
using the seedexpander with seed1 as seed. For encryption process, randomized access is
done using the seedexpander function with θ as seed.

Random vectors are sampled uniformly from Fk
2, Fn

2 or from Fn
2 with a given Hamming

weight. Sampling from Fk
2 and Fn

2 is performed by �lling the mathematical representation
of the vector with random bits. Sampling a vector from Fn

2 of a given weight starts by
generating the support using Algorithm 1. Next, the sampled support is converted to an n-
dimensional array. The distribution of the resulting vector is biased away from the uniform
distribution, however we show in section 5.3, that this bias does not a�ect the security of
the scheme.

31

Algorithm 1: Fixed Hamming weight vector sampling (Algorithm 5 in [33])

Input: n,w, seed
Output: w distinct elements of {0, · · · , n}

1: prng← prng-init(seed)
2: for i = w − 1 downto 0 do

3: l← i+ rand(n− i, prng)
4: pos[i] ← (l ∈ {pos[j], i < j < t}) ? i : l
5: return pos[0], · · · , pos[w − 1]

rand(n, prng);
1: x← randBits(B, prng)
2: return x mod n

2.6.3 Sampling order for key generation and encryption

To optimize performance, the sampling order of variables in both key generation and en-
cryption processes follows the strategy outlined for hardware implementations in [2]. As
demonstrated by the authors of [2], this adjusted sampling order leads to signi�cant perfor-
mance improvements, particularly in hardware environments. For key generation, variables
are sampled in the order: �rst y, then x. Similarly, during encryption, the randomness
values are sampled in the following sequence: r2, then e, and �nally r1.

2.6.4 The functions G and K

The concrete instantiation of G and K is de�ned using SHAKE256 with 512 bits output
customized with a domain separation tag that we denote SHAKE256-512. In particular, we
have SHAKE256-512(·∥G_FCT_DOMAIN) for G(·) and SHAKE256-512(·∥K_FCT_DOMAIN) for
K(·) where the �nal constant (G_FCT_DOMAIN or K_FCT_DOMAIN) is encoded over one byte.

2.7 Parameters

In this section, we specify which codes are used for HQC and give concrete sets of parame-
ters.

We propose several sets of parameters, targeting di�erent levels of security with DFR
related to these security levels. The proposed sets of parameters cover security categories
1, 3, and 5 (for respectively 128, 192, and 256 bits of security). For each parameter set, the
parameters are chosen so that the minimal workfactor of the best known attack exceeds the
security parameter. For classical attacks, best known attacks include the works from [10,
9, 13, 5] and for quantum attacks, the work of [8]. We consider w = O (

√
n) and follow the

complexity described in [11] (see Section 6 for more details).

2.7.1 Concatenated codes

When we use a Concatenated code (Def. 2.5.1). A messagem ∈ Fk
2 is encoded intom1 ∈ Fn1

28

with the Reed-Solomon code, then each coordinate m1,i of m1 is encoded into m̃1,i ∈ Fn2
2

with the duplicated Reed-Muller code. In the latter step, the encoding is done in two

32

phases. First, we use the RM(1, 7) to encode m1,i and we obtain m̄1,i ∈ F128
2 . Then, m̄1,i

is duplicated depending on the multiplicity of the Reed-Muller code (see Tab. 4).

To match the description of our cryptosystem in Section 2.3, we have mG = m̃ =

(m̃1,0, . . . , m̃1,n1−1) ∈ Fn1n2
2 . To obtain the ciphertext, r = (r1, r2)

$← R2 and e
$← R are

generated and the encryption of m is c = (u = r1 + h · r2,v = mG+ s · r2 + e).
In Tab. 6, n1 denotes the length of the Reed-Solomon code, n2 the length of the Reed-

Muller code so that the length of the concatenated code C is n1n2 (the ambient space has
length n, the smallest primitive prime greater than n1n2 to avoid algebraic attacks). w
is the weight of the n-dimensional vectors x, y, wr the weight of r1, and r2 and similarly
we = ω(e) for our cryptosystem.

Instance n1 n2 n w wr = we security pfail

hqc-128 46 384 17,669 66 75 128 < 2−128

hqc-192 56 640 35,851 100 114 192 < 2−192

hqc-256 90 640 57,637 131 149 256 < 2−256

Table 6: Parameter sets for HQC. The concatenated code used is consists of a [n2, 8, n2/2]
Reed-Muller code as the internal code, and a [n1, k, n1 − k + 1] Reed-Solomon code as the
external code. The resulting public key, secret key and ciphertext sizes, are given in Tab. 7.
The aforementioned sizes are the ones used in our reference implementation except that we
also concatenate the public key within the secret key in order to respect the NIST API.

Instance pk size sk size ct size ss size

hqc-128 2,249 56 4,497 64

hqc-192 4,522 64 9,042 64

hqc-256 7,245 72 14,485 64

Table 7: Sizes in bytes for HQC (see section 2.6).

3 Performance Analysis

This section provides performance measures of our HQC.KEM implementations.

Benchmark platform. The benchmarks have been performed on a machine that has
32GB of memory and an Intel® Core� i7-11850H CPU @ 2.50GHz for which the Hyper-
Threading, Turbo Boost and SpeedStep features were disabled. The scheme have been
compiled with gcc (version 11.3.0). For each parameter set, the results have been obtained
by computing the mean from 1000 random instances. In order to minimize biases from

33

background tasks running on the benchmark platform, each instances have been repeated
100 times and averaged.

Constant time. The provided optimized AVX implementations have been implemented in
constant time. We have thoroughly analyzed the code to check that only unused randomness
(i.e. rejected based on public criteria) or otherwise nonsensitive data may be leaked. The
reference implementation is provided to help understanding the scheme and thus is not
implemented to be constant time in any way.

3.1 Reference implementation

The reference implementation is written in C++ and have been compiled with g++ (version
8.2.1) using the compilation �ags -O3 -pedantic -pthread. The following third party
libraries have been used: gmp (version 6.1.2), NTL (version 11.5.1) [34] and GF2X (version
1.3.0). The performances of our reference implementation on the aforementioned benchmark
platform are described Tab. 8.

Instance KeyGen Encaps Decaps

hqc-128 189 393 783

hqc-192 424 890 1724

hqc-256 860 2067 3624

Table 8: Performance in kilocycles of the reference implementation for di�erent instances
of HQC.

3.2 Optimized constant-time implementation

A constant-time optimized implementation leveraging AVX2 instructions have been
provided. Its performances on the aforementioned benchmark platform are de-
scribed in Tab. 10. The following optimization �ags have been used during com-
pilation: -O3 -std=c99 -funroll-all-loops -flto -mavx -mavx2 -mbmi -mpclmul

-pedantic -Wall -Wextra. There are two main di�erences between the reference and
the optimized implementation. Firstly, the multiplication of two polynomial is vectorized.
Secondly, we added a vectorized version of the Reed-Muller decoding algorithm.

In the sequel we give some details on the optimizations done in this version.

Multiplication over F2[X]/(Xn − 1) (dense-dense multiplication) In this version
we do not take into account the sparsity of one of the polynomial. We use a classical dense-
dense multiplication to avoid some possible leakage of information. This multiplication is
done using a combination of Toom-Cook multiplication and Karatsuba multiplication.

34

About Toom-Cook multiplication over F2[X] One wants to multiply two arbi-
trary polynomials over F2[X] of degree at most N − 1, using the Toom-Cook algorithm.
Several approaches have been extensively detailed in the literature. Let A and B be two
binary polynomials of degree at most N − 1. These polynomials are packed into a table of
64 bit words, whose size is ⌈N/64⌉. Let t = 3n with n a value ensuring t ⩾ ⌈N/64⌉. Now,
A and B are considered as polynomials of degree at most 64 · t− 1. A and B are split into
three parts. One wants now to evaluate the result C = A ·B with

A = a0 + a1 ·X64n + a2 ·X2·64n ∈ F2[X],

B = b0 + b1 ·X64n + b2 ·X2·64n ∈ F2[X],

(of maximum degree 64t− 1, and ai, bi of maximum degree 64n− 1) and,

C = c0 + c1 ·X64n + c2 ·X2·64n + c3 ·X3·64n + c4 ·X4·64n ∈ F2[X]

of maximum degree 6 · 64n− 2.
The "word-aligned" version evaluates the polynomial for the values 0, 1, x = Xw,

x+1 = Xw+1,∞, w being the word size, typically 64 in modern processors. Furthermore,
on Intel processors, one can set w = 256 to take advantage of the vectorized instruction set
AVX-AVX2 at the cost of a slight size reduction. After the evaluation phase, one performs
an interpolation to get the result coe�cients.

For the evaluation phase, one has:

C(0) = a0 · b0
C(1) = (a0 + a1 + a2) · (b0 + b1 + b2)
C(x) = (a0 + a1 · x+ a2 · x2) · (b0 + b1 · x+ b2 · x2)
C(x+ 1) = (a0 + a1 · (x+ 1) + a2 · (x2 + 1)) · (b0 + b1 · (x+ 1) + b2 · (x2 + 1))
C(∞) = a2 · b2

The implementation of this phase is straightforward, providing that the multiplications
ai · bi is either another Toom-Cook or Karatsuba multiplication. One may notice that the
multiplications by x or x2 are virtually free word shifts.

Finally, the interpolation phase gives :

c0 = C(0)
c1 = (x2 + x+ 1)/(x2 + x) · C(0) + C(1) + C(x)/x+ C(x+ 1)/(x+ 1) + (x2 + x) · C(∞)
c2 = C(1)/(x2 + x) + C(x)/(x+ 1) + C(x+ 1)/x+ (x2 + x+ 1) · C(∞)
c3 = C(0)/(x2 + x) + C(1)/(x2 + x) + C(x)/(x2 + x) + C(x+ 1)/(x2 + x)
c4 = C(∞)

About Karatsuba algorithm Let A and B be two binary polynomials of degree
at most N − 1. These polynomials are packed into a table of 64 bit words, whose size is
⌈N/64⌉. Let t = 2r with r the minimum value ensuring t ⩾ ⌈N/64⌉. Now, A and B are
considered as polynomials of degree at most 64 · t − 1. The corresponding multiplication

35

algorithm is reproduce in Algorithm 2. In this algorithm, the polynomials A and B are
split into two parts, however, variants with other splits can be extrapolated. In particular,
we used a 3-part split (3-Karatsuba) as the Toom-Cook elementary multiplication for
hqc-128 and hqc-192, and a 5-part split (5-Karatsuba) as the Toom-Cook elementary
multiplication for hqc-256. The multiplication line 2 (denoted Mult64) is performed using
a single processor instruction (pclmul for carry-less multiplier): this is the case for the
Intel Cores i3, i5 and i7 and above.

Algorithm 2: KaratRec(A,B,t)

Require: A and B on t = 2r computer words.
Ensure: R = A×B
1: if t = 1 then
2: return (Mult64(A,B))
3: else
4: // Split in two halves of word size t/2.
5: A = A0 + x64t/2A1

6: B = B0 + x64t/2B1

7: // Recursive multiplication
8: R0 ← KaratRec(A0, B0, t/2)
9: R1 ← KaratRec(A1, B1, t/2)

10: R2 ← KaratRec(A0 + A1, B0 +B1, t/2)
11: // Reconstruction
12: R← R0 + (R0 +R1 +R2)X

64t/2 +R1X
64t

13: return (R)
14: end if

Application to the HQC multiplication over F2[X] The set of parameters for the HQC
protocols leads to the following construction of the multiplications over F2[X] depicted in
table 9.

3.3 Hardware Implementation

We have implemented HQC in its entirety on an Artix-7 FPGA, using High-Level Synthe-
sis (HLS). In order to be compatible with HLS, we have produced an alternative version
of our software library, that can be compiled in C and run in software or transformed
by HLS into VHDL code. This greatly simpli�es the maintainability of the code with
respect to a pure VHDL implementation. The implementation is available in the folder
Hardware_Implementation and has detailed readme �les explaining its usage. It provides
a set of test benchs for the key generation, encapsulation and decapsulation functions that
verify that the hardware implementation provides exactly the same output as the reference
implementation.

36

Table 9: Implementation of the multiplications over F2[X]
Multiplication over F2[X]

Version hqc-128 hqc-192 hqc-256
HQC Size (bits) 17669 35851 57637

Main multiplication Toom3-Karat3 Toom3-Karat3 Toom-Cook 3

Size (bits) 18048 36480 59904
Elementary mult. 3-Karatsuba 3-Karatsuba 5-Karatsuba

Size (bits) 6144 12288 20480

Instance KeyGen Encaps Decaps

hqc-128 75 177 323

hqc-192 175 404 669

hqc-256 356 799 1427

Table 10: Performance in kilocycles of the optimized implementation using AVX2 instruc-
tions for di�erent instances of HQC.

The HLS-compatible C implementation2 can be automatically translated in two VHDL
implementations, one high-throughput (called perf) and one compact. It is also possible
to implement only one function (key generation, encapsulation and decapsulation) or to
implement all of them with the bene�t of resource sharing (i.e. the cost of implementing
the three functions together is quite below the sum of the costs of the functions taken
independently). For the moment we have only optimized and studied the performance for
the VHDL generated for HQC L1.

The performance �gures can be resumed as follows: the perf implementation re-
quires 6.6k slices in an Artix-7 and provides key generation/encapsulation/decapsulation
in 0.27/0.52/1.2 milliseconds; the compact implementation requires 3.1k slices in the same
FPGA and provides the same functionalities in 4.8/12/16 milliseconds. More detailed
�gures can be found in the following tables. First we provide the results for our perf
implementation.

HQC L1 function Area (slices) LUTs FF BRAM Cycles Freq. (MHz) Time (ms)
All functions 6.6k 20k 16k 12.5 320k 148 2.2

Keygen 3.9k 12k 9k 3 40k 150 0.27
Encaps 5.5k 16k 13k 5 89k 151 0.59
Decaps 6.2k 19k 15k 9 190k 152 1.2

As the �gures highlight, the implementation is quite compact for a throughput oriented

2Note that the �les of our implementation have the extension .cpp as we use C++ datatypes that make
data �ddling easier, but besides this bit manipulations inside the data all of our code is pure C as in the
original library.

37

implementation, requiring just six thousand slices, including the area taken by the Keccak
functions. The throughput obtained is also well balanced with a remarkably fast key genera-
tion. HLS has the reputation in cryptography of providing large and slow implementations.
Whereas the result is probably suboptimal and it is possible to provide a pure-VHDL im-
plementation that is faster and smaller, these �gures show that HQC is hardware friendly
enough to have at the same time compacity, high throughput, and easy maintainability
with an HLS implementation.

The compact implementation increases signi�cantly (around a factor ten) the time re-
quired by each function while dividing the surface required by two. It may be interesting
in niche settings in which the FPGA surface has other important usages and doing a few
transactions per second is enough (e.g. a satellite). The performance �gures of the compact
implementation are as follows.

HQC L1 function Area (slices) LUTs FF BRAM Cycles Freq. (MHz) Time (ms)
All functions 3.1k 8.9k 6.4k 14 4.3m 132 32

Keygen 1.5k 4.7k 2.7k 3 630k 129 4.8
Encaps 2.1k 6.4k 4.1k 5 1.5m 127 12
Decaps 2.7k 7.7k 5.6k 10.5 2.1m 130 16

4 Known Answer Test Values

Known Answer Test (KAT) values have been generated using the script provided by
the NIST. They are available in the folders KATs/Reference_Implementation/ and
KATs/Optimized_Implementation/.

In addition, examples with intermediate values have also been provided in these folders.

Notice that one can generate the aforementioned test �les using respectively the kat

and verbose modes of our implementation. The procedure to follow in order to do so is
detailed in the technical documentation.

5 Security

5.1 IND-CPA security

In this section we prove the IND-CPA security of the HQC.PKE scheme. Let b1 = h(1) mod
2, b2 = w+b1×w mod 2, b3 = wr+b1×wr mod 2 = we+b1×we mod 2 and ℓ = n−n1×n2.

Theorem 5.1. For any IND-CPA adversary A against the HQC.PKE scheme (Figure 2),
there exists adversaries B1 and B2 both running in about the same time as A such that:

AdvIND-CPA
HQC.PKE(A) ≤ 2 · (Adv2-DQCSD-P(B1) + Adv3-DQCSD-PT(B2)) . (21)

38

Proof of Theorem 5.1. We build a sequence of games transitioning from an adversary re-
ceiving an encryption of message m0 to an adversary receiving an encryption of a message
m1, and show that if the adversary manages to distinguish one from the other, then one can
build a simulator breaking the 2-DQCSD-P assumption or the 3-DQCSD-PT assumption.

Game G1: In this game, we encrypt m0 following the protocol:

Game1HQC.PKE,A(λ)

1. param← Setup(1λ)
2. (pk, sk)← KeyGen(param) with pk = (h,s = x+ h · y) and sk = (x,y)
3. (m0,m1)← ACHOOSE(pk)
4. c = (u,v)← Encrypt(pk,m0)
5. b← AGUESS(pk, c)
6. RETURN b

Game G2: In this game we forget the decryption key sk = (x,y), take s at random with
parity b2 and then follow the protocol as in Game G1 for the remaining steps:

Game2HQC.PKE,A(λ)

1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (h,s = x+ h · y) and sk = (x,y)

2b. s
$← Fn

2,b2

2c. (pk, sk)← ((h,s),0)
3. (m0,m1)← ACHOOSE(pk)
4. c = (u,v)← Encrypt(pk,m0)
5. b← AGUESS(pk, c)
6. RETURN b

Suppose that an adversary B1 is able to distinguish Game G1 from Game G2 with ad-
vantage ϵ for some security parameter λ. Then one can build an algorithm Dλ

2-DQCSD-P

solving the 2-DQCSD-P problem with the same advantage ϵ.

Dλ
2-DQCSD-P (H, s)

1. Set param← Setup(1λ)
2. Compute h from H = (In rot(h))
3. Compute pk← (h, s)
4. Compute (m0,m1)← B1,CHOOSE(pk)
5. Compute c = (u,v)← Encrypt(pk,m0)
6. Get b′ ← B1,GUESS(pk, c)
7. If b′ = G1, output 2-QCSD-P(n,w, b1, b2) distribution
8. If b′ = G2, output U(Fn×2n

2,b1
× Fn

2,b2
) distribution

39

Note that pk is sampled from the 2-QCSD-P(n,w, b1, b2) distribution in Game G1

while it is sampled from the uniform distribution over Fn×2n
2,b1

× Fn
2,b2

in Game G2

therefore the advantage of Dλ
2-DQCSD-P is the same as the advantage of B1.

Game G3: In this game, instead of picking correctly weighted r1, r2, e, the simulator picks
random vectors in Fn

2 thus generating a random ciphertext with expected parity.

Game3HQC.PKE,A(λ)

1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (h,s = x+ h · y) and sk = (x,y)

2b. s
$← Fn

2,b2

2c. (pk, sk)← ((h,s),0)
3. (m0,m1)← ACHOOSE(pk)

4a. e
$← Fn

2 , r = (r1, r2)
$← Fn

2,wr
× Fn

2,wr

4b. u← r1 + hr2 and v← truncate(m0G+ s · r2 + e, ℓ)
4c. c← (u,v)
5. b← AGUESS(pk, c)
6. RETURN b

Suppose that an adversary B2 is able to distinguish Game G2 from Game G3 with ad-
vantage ϵ for some security parameter λ. Then one can build an algorithm Dλ

3-DQCSD-PT

solving the 3-DQCSD-PT problem with the same advantage ϵ.

Dλ
3-DQCSD-PT(H, (u,v))

1. Set param← Setup(1λ)
2. Compute G from param

3. Compute h and s from H =

(
In 0 rot(h)
0 In rot(s)

)
4. Compute pk← (h, s)
5. Get (m0,m1)← B2,CHOOSE(pk)
6. Compute c← (u,m0G+ v)
7. Get b′ ← B2,GUESS(pk, c)
8. If b′ = G2, output 3-QCSD-PT (n,w, b1, b2, b3, ℓ) distribution
9. If b′ = G3, output U(F2n×3n

2,b1,b2
× (Fn

2,b3
× Fn−ℓ

2)) distribution

As we have:

(u,v −m0G)⊤ =

(
In 0 rot(h)
0 In rot(s)

)
· (r1, e, r2)⊤ ,

the di�erence between Game G2 and Game G3 is that in the former((
In 0 rot(h)
0 In rot(s)

)
, (u,v −m0G)

)
40

follows the 3-QCSD-PT (n,w, b1, b2, b3, ℓ) distribution while in the latter it follows a
uniform distribution with parity over F2n×3n

2,b1,b2
× (Fn

2,b3
× Fn−ℓ

2). Hence, the advantage

of Dλ
3-DQCSD-PT is the same as the advantage of B2.

Game G4: In this game, we encrypt the message m1 instead of m0.

Game4HQC.PKE,A(λ)

1. param← Setup(1λ)
2a. (pk, sk)← KeyGen(param) with pk = (h,s = x+ h · y) and sk = (x,y)

2b. s
$← Fn

2,b2

2c. (pk, sk)← ((h,s),0)
3. (m0,m1)← ACHOOSE(pk)

4a. e
$← Fn

2 , r = (r1, r2)
$← Fn

2,wr
× Fn

2,wr

4b. u← r1 + hr2 and v← truncate(m1G+ s · r2 + e, ℓ)
4c. c← (u,v)
5. b← AGUESS(pk, c)
6. RETURN b

The outputs from Game G3 and Game G4 follow the exact same distribution, and
therefore the two games are indistinguishable from an information-theoretic point of
view. Indeed, u is computed identically in both Game G3 and Game G4. In addition,
v is indistinguishable between both games as it is masked by the random vector e
and any parity di�erence between the Hamming weights of m0G and m1G is hidden
by its truncation.

Game G5: In this game, we pick r1, r2 and e with their expected weight. We do not explicit
this game as GameG4 and GameG5 are equivalent to GameG3 and GameG2 except
thatm1 is used instead ofm0. Hence, a distinguisher between these two games breaks
the 3-DQCSD-PT assumption.

Game G6: In this game, the public key is sampled as expected in the protocol. We do
not explicit this game as Game G5 and Game G6 are equivalents to Game G2 and
Game G1. Hence, a distinguisher between these two games breaks the 2-DQCSD-P
assumption.

We have built a sequence of games allowing a simulator to transform a ciphertext of a
message m0 into a ciphertext of a message m1. As a result, the advantage of an adversary
against the IND-CPA experiment is bounded by:

AdvIND-CPA
HQC.PKE(A) ≤ 2 · (Adv2-DQCSD-P(B1) + Adv3-DQCSD-PT(B2)) . (22)

41

5.2 IND-CCA2 security

In this section we provide the IND-CCA2 proof for HQC.

5.2.1 HQC.PKE correction and DFR

De�nition 5.2.1 (δ-correct PKE [20]). A PKE (Keygen,Encrypt,Decrypt) is δ-correct if

E
(
max
m∈M

Pr [Decrypt(sk, c) ̸= m | c← Encrypt(pk,m)]

)
≤ δ. (23)

where the expectation is taken over (pk, sk)← KeyGen(param).

De�nition 5.2.2 (δ-correct KEM [20]). A KEM (Keygen,Encapsulate,Decapsulate) is δ-
correct if

Pr =

[
Decapsulate(sk, c) ̸= K

∣∣∣∣ (pk, sk)← KeyGen(param);
(K, c)← Encapsulate(pk)

]
≤ δ (24)

In HQC.PKE the failure to decrypt a ciphertext (u,v) occurs if and only if

ω (x · r2 − r1 · y + e) > ∆.

Note that the aforementioned equation does not depend on the message m. Therefore, the
probability in Equation 23 simpli�es to

Pr [Decrypt(sk, c) ̸= m | c← Encrypt(pk,m)] ≤ δ. (25)

Which is equivalent to the following probability that we analyze in section 2.5.8,

Pr

ω (x · r2 − r1 · y + e) > ∆

∣∣∣∣∣∣∣
(x,y)

$← Rw ×Rw;

e
$← Rwe ;

r = (r1, r2)
$← Rwr ×Rwr

 ≤ δ. (26)

5.2.2 A CCA proof for HQC

Following the HHK framework [20], the public-key encryption scheme HQC.PKE is converted
to a deterministic public-key encryption scheme HQC.PKE1 (see Figure 6). The security of
HQC.PKE1 is reduced to the security of HQC.PKE. It is worth mentioning, that to prevent
multi-ciphertext attack, we introduced a minor modi�cation to HQC.PKE1 by incorporating
a public salt value into the ciphertext. So that the randomness θ is computed from a salt
together with the �rst 32 bytes of the public key. More formally we have the following
Lemma.

42

Lemma 5.2 (Theorem 3.2 in [20]). If HQC.PKE is a δ-correct public-key encryption scheme,
for any OW-PCA adversary B′ against HQC.PKE1 issuing at most qG queries to the sampler
(modeled as a random oracle), there exists an IND-CPA adversary A against HQC.PKE such
that

AdvOW-PCA
HQC.PKE1

(B′) ≤ qG · δ +
2 · qG + 1

|M|
+ 3 · AdvIND-CPA

HQC.PKE(A). (27)

HHK de�nes a transform from a deterministic public-key encryption scheme HQC.PKE1

to a key encapsulation mechanism HQC.KEM ̸⊥ (see Figure 7). The IND-CCA2 security of
the HQC.KEM ̸⊥ is reduced to the OW-PCA security of HQC.PKE1, more formally, using
Theorem 3.4 in [20] we have the following result.

Lemma 5.3 (Theorem 3.4 in [20]). If HQC.PKE1 is δ-correct then HQC.KEM ̸⊥ is also δ-
correct. For any IND-CCA2 adversary B against HQC.KEM ̸⊥ issuing at most qK queries
to the key generation function K (modeled as a random oracle), there exists an OW-PCA
adversary B′ against HQC.PKE1 such that

AdvIND-CCA2
HQC.KEM̸⊥(B) ≤

qK
|M|

+ AdvOW-PCA
HQC.PKE1

(B′). (28)

Notice that we have that HQC.PKE1 is OW-PCA in the sense of HHK, therefore Lemmas
5.2 and 5.3 hold in their framework.

Theorem 5.4. If HQC.PKE is a δ-correct public-key encryption scheme, then, for all
IND-CCA2 adversary B against HQC.KEM ̸⊥ issuing at most qK queries to K and qG to
G (where K and G are modeled as random oracles), there exits an IND-CPA adversary A
against HQC.PKE, running about the same time, such that

AdvIND-CCA2
HQC.KEM̸⊥(B) ≤ qG · δ +

2 · qG + 1 + qK
|M|

+ 3 · AdvIND-CPA
HQC.PKE(A). (29)

Proof. The proof combines Lemmas 5.2 and 5.3.

� Setup(1λ): outputs the global parameters param = (n, k, δ, w, wr, we, ℓ).

� KeyGen(param): samples h
$← R, the generator matrix G ∈ Fk×n

2 of C, sk =

(x,y)
$← Rw ×Rw, sets pk = (h, s = x+ h · y), and returns (pk, sk).

� Encrypt1(pk,m, salt): Derive the randomness θ ← G(m∥firstBytes(pk, 32)∥salt)
and use θ to generates (e, r1, r2) such that ω(e) = we and ω(r1) = ω(r2) = wr,
sets u = r1 + h · r2 and v = truncate(mG+ s · r2 + e, ℓ), returns c = (u,v).

� Decrypt1(sk, c, salt): computes m ← Decrypt(sk, c). If m = ⊥ or c ̸=
Encrypt1(pk,m, salt) then returns ⊥ otherwise returns m.

Figure 6: HQC.PKE1 - A deterministic version of HQC.PKE

43

� Setup(1λ): outputs the global parameters param = (n, k, δ, w, wr, we, ℓ).

� KeyGen(param): samples h
$← R, the generator matrix G ∈ Fk×n

2 of C, sk =

(x,y, σ)
$← Rw ×Rw ×M, sets pk = (h, s = x+ h · y), and returns (pk, sk).

� Encapsulate(pk): generates m
$← M, salt

$← F128
2 , computes

c←Encrypt1(pk,m, salt). Computes K ← K(m, c), and return (K, c, salt).

� Decapsulate(sk, c, salt): compute m ← Decrypt1(sk, c, salt). If m ̸= ⊥ then K ←
K(m, c) else K ← K(σ, c).

Figure 7: HQC.KEM ̸⊥ - HQC.KEM with implicit rejection from HQC.PKE1

Theorem 5.5. If HQC.PKE is a δ-correct public-key encryption scheme, for any IND-CCA2
adversary B against HQC.KEM ̸⊥ issuing at most q queries to K or G (where K and G are
modeled as random oracles), there there exists adversaries B1 and B2 both running in about
the same time as B such that:

AdvIND-CCA2
HQC.KEM̸⊥(B) ≤ qG ·δ+

2 · qG + 1 + qK
|M|

+6·(Adv2-DQCSD-P(B1) + Adv3-DQCSD-PT(B2)) . (30)

Proof. The proof combines Theorems 5.1 and 5.4.

5.3 Security proof with non uniform randomness generation

In this section, we show that there is no e�ective impact on the IND-CCA2 security of HQC
if vectors of small weights are sampled non uniformly, but close enough to uniform. In order
to do so, we use a similar approach as in [33]. Let us start by recalling the following results
from [33].

Proposition 5.3.1 (Proposition 3 in [33]). Let S be the distribution over Rw when sampling
using Algorithm 1, when x ← randbits(B, prng) behaves as a random oracle which yields
uniformly distributed integers, 0 ≤ x < 2B. for any integer B > 0, we have

w−1∏
i=0

(
1− ni

2B

)
= τmin ≤

Pr
[
e
∣∣∣ e S← Rw

]
Pr

[
e
∣∣∣ e $← Rw

] ≤ τmax =
w−1∏
i=0

(
1 +

(n− i)− ni

2B

)
. (31)

where ni = 2B mod (n− i) for all i, 0 ≤ i < w.

For HQC parameters, the ratios τmin and τmax are very close to 1 (see Table 11).
Using the following Lemma adapted from [33], we have that the advantage of any ad-

versary when a vector e of weight w is sampled following Algorithm 1 instead of uniform
distribution, cannot increase by a factor larger than τmax.

44

B = 32
Security n wr τmin τmax

128 17,669 75 0.99938 1.00061
192 35,851 114 0.99808 1.00188
256 57,637 149 0.99803 1.00202

Table 11: Bias between the uniform distribution and the output of Algorithm 1 for encryp-
tion randomness vectors of weight wr or we.

Lemma 5.6 (Adapted from [33]). For any real-valued random variable V : Rw → R, we
have ∑

e∈Rw

Pr
[
e
∣∣∣ e S← Rw

]
V (e) ≤ τmax ·

∑
e∈Rw

Pr
[
e
∣∣∣ e $← Rw

]
V (e). (32)

5.3.1 Arguments related to the security reduction

Following [33], we show that the IND-CCA2 security proof of HQC is not impacted when the
encryption randomness is sampled using Algorithm 1 rather than the uniform distribution.
More precisely, we check that Equations 27 and 28 still holds.

In Equation 28, the inequality holds independently of the distribution of the vectors
obtained from G. Therefore, this equation still holds if we switch to Algorithm 1. On the
other hand, and as shown in [33], to prove the inequality in Equation 27, one should revisit
the proof. Indeed, in the third term in Equation 27, the derandomization of HQC.PKE
would not lead to HQC.PKE1. We rather consider a variant HQC.PKES (Figure 8) in which
the vectors (e, r1, r2) are sampled using Algorithm 1.

1. The �rst term qG · δ in Equation 27 is related to the δ-correctness and by consequence
to the DFR of our scheme. Let (e, r1, r2) be sampled using Algorithm 1 rather than
the uniform distribution. Then, δ must be such that

Pr =

ω (x · r2 − r1 · y + e) > ∆

∣∣∣∣∣∣∣
(x,y)

$← Rw ×Rw;

e
S← Rwe ;

r = (r1, r2)
S← Rwr ×Rwr

 ≤ δ. (33)

Using Lemma 5.6, we have that the above probability, increases by a factor at most
τmax.

2. As showed [33], the middle term remain unchanged since it is independent of the
output distribution of G.

3. In the right most term, the advantage become AdvIND-CPA
HQC.PKES (A). Using Lemma 5.6, we

have that AdvIND-CPA
HQC.PKES (A) ≤ τmax · AdvIND-CPA

HQC.PKE(A).

45

� Setup(1λ): outputs the global parameters param = (n, k, δ, w, wr, we, ℓ).

� KeyGen(param): samples h
$← R, the generator matrix G ∈ Fk×n

2 of C, sk =

(x,y)
$← Rw ×Rw, sets pk = (h, s = x+ h · y), and returns (pk, sk).

� Encrypt(pk,m): generates e
S← Rwe , r = (r1, r2)

S← Rwr ×Rwr , sets u = r1+h · r2
and v = truncate(mG+ s · r2 + e, ℓ), returns c = (u,v).

� Decrypt(sk, c): returns C.Decode(v − u · y).

Figure 8: HQC.PKES a modi�ed HQC.PKE with non uniform encryption randomness.

5.3.2 Arguments related to the public key generation

Figure 9 presents two games associated with HQC, which vary solely in the method of sam-
pling for the secret key - either through uniform sampling or utilizing a speci�c distribution.

Lemma 5.7. If there is a polynomial time adversary A that can succeed in winning the
biased game Exp1 with a probability of p, it can also achieve victory in game Exp′

1 with
probability ≤ τp where

τ =
Pr

[
(x,y)

∣∣∣ (x,y) S← Rw ×Rw

]
Pr

[
(x,y)

∣∣∣ (x,y) $← Rw ×Rw

] . (34)

Proof. The proof is straightforward application of Lemma 5.6.

In the security games associated with public key encryption and key encapsulation
mechanism discussed in the sections 5.1 and 5.2, a single key pair is randomly selected at
the start of the game, and a single instance of distribution S is used. Consequently, no
adversary can achieve a success probability greater than a factor of τ when a biased key is
utilized instead of a uniform one. Using Proposition 5.3.1 we have that

τ ≤ 2
w−1∏
i=0

(
1 +

(n− i)− ni

232

)
, ni = 232 mod (n− i), 0 ≤ i ≤ w. (35)

6 Known Attacks

Attacks against Syndrome Decoding. The practical complexity of the SD problem for
the Hamming metric has been widely studied for more than 50 years. Most e�cient attacks
are based on Information Set Decoding, a technique �rst introduced by Prange in 1962 [30]
and improved later by Stern [35], then Dumer [12]. Recent works [27, 5, 28] suggest a
complexity of order 2cw(1+negl(1)), for some constant c. A particular work focusing on the

46

Exp1 (biased key)

1. (x,y)
S← Rw ×Rw

.

.

.

Exp′
1 (uniform key)

1. (x,y)
$← Rw ×Rw

.

.

.

Figure 9: Experiments using biased and uniform key sampling.

B = 32
Security n w τmin τmax

128 17,669 66 0.99945 1.00054
192 35,851 100 0.99832 1.00166
256 57,637 131 0.99651 1.00353

Table 12: Bias between the uniform distribution and the output of Algorithm 1 for the
secret key vectors of weight w.

regime w = negl(n) con�rms this formula, with a close dependence between c and the rate
k/n of the code being used [11].

Speci�c structural attacks. Quasi-cyclic codes have a special structure which may
potentially open the door to speci�c structural attacks. A �rst generic attack is the DOOM
attack [32] which because of cyclicity implies a gain of O(

√
n) (when the gain is in O(n) for

MDPC codes, since the code is generated by a small weight vector basis). It is also possible
to consider attacks on the form of the polynomial generating the cyclic structure. Such
attacks have been studied in [19, 25, 32], and are especially e�cient when the polynomial
xn− 1 has many low degree factors. These attacks become ine�cient as soon as xn− 1 has
only two irreducible factors of the form (x− 1) and xn−1 + xn−2 + ...+ x+ 1, which is the
case when n is prime and q generates the multiplicative group (Z/nZ)∗. Such numbers are
known up to very large values. We consider such primitive n for our parameters.

Security of the 2-DQCSD-P and 3-DQCSD-PT problems. Concerning the security of
the 2-DQCSD-P problem, there is one security bit lost in the reduction to the 2-DQCSD
problem. Regarding the security of the 3-DQCSD-PT problem, whenever the number of
truncated positions is very small compared to the block length n, the impact on the security
is negligible with respect to the 3-DQCSD problem since the best attack is the ISD attack.
Moreover since the truncation breaks the quasi-cyclicity, it also weakens the advantage of
quasi-cyclicity for the attacker.

Choice of parameters. We proposed di�erent sets of parameters in Section 2.7 that �t
security levels 1, 3 and 5, as de�ned by NIST. The quantum-safe security is obtained by
dividing the security bits by two (taking the square root of the complexity) [8]. Best known

47

attacks include the works from [10, 9, 13, 27, 5, 28] and for quantum attacks, the work
of [8]. In the setting w = O (

√
n), best known attacks have a complexity in 2−t ln(1−R)(1+o(1))

where t = O(w) and R is the rate of the code [11]. In our con�guration, we have t = 2w
and R = 1/2 for the reduction to the 2-DQCSD problem, and t = 3wr and R = 1/3 for the
3-DQCSD problem. By taking into account the DOOM attack [32], and also the fact that
we consider balanced vectors (x,y) and (r1, e, r2) for the attack (which costs only a very
small factor, since random words have a good probability to be balanced on each block),
we need to divide this complexity by approximately

√
n (up to polylog factor). The term

o(1) is respectively log
((

n
w

)2
/
(
2n
2w

))
and log

((
n
wr

)3
/
(
3n
3wr

))
for the 2-DQCSD and 3-DQCSD

problems.

7 Advantages and Limitations

7.1 Advantages

The main advantages of HQC over existing code-based cryptosystems are:

� its IND-CPA reduction to a well-understood problem on coding theory: the Quasi-
Cyclic Syndrome Decoding problem,

� its immunity against attacks aiming at recovering the hidden structure of the code
being used,

� small public key size

� close estimations of its decryption failure rate.

� e�cient implementations based on classical decoding algorithms.

The fourth item allows to achieve a tight reduction for the IND-CCA2 security of the
KEM-DEM version through the recent transformation of [20].

7.2 Limitations

A �rst limitation to our cryptosystem (at least for the PKE version) is the low encryption
rate. It is possible to encrypt 256 bits of plaintext as required by NIST, but increasing this
rate also increases the parameters.

As a more general limitation and in contrast with lattices and the so-called Ring Learning
With Errors problem, code-based cryptography does not bene�t from search to decision
reduction for structured codes.

48

References

[1] Carlos Aguilar-Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
and Gilles Zémor. E�cient encryption from random quasi-cyclic codes. IEEE Trans-
actions on Information Theory, 64(5):3927�3943, 2018. 10, 11

[2] Francesco Antognazza, Alessandro Barenghi, Gerardo Pelosi, and Ruggero Susella. A
High E�ciency Hardware Design for the Post-Quantum KEM HQC. In 2024 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pages
431�441. IEEE, 2024. 3, 32

[3] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant
input locality. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
92�110. Springer, Heidelberg, August 2007. 13

[4] Nicolas Aragon, Philippe Gaborit, and Gilles Zémor. Hqc-rmrs, an instantiation of
the hqc encryption framework with a more e�cient auxiliary error-correcting code.
https://arxiv.org/abs/2005.10741. 17, 21

[5] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In
David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237
of LNCS, pages 520�536. Springer, Heidelberg, April 2012. 32, 46, 48

[6] Elwyn Berlekamp. Algebraic coding theory. World Scienti�c, 1968. 24

[7] Elwyn R Berlekamp, Robert J McEliece, and Henk CA van Tilborg. On the in-
herent intractability of certain coding problems. IEEE Transactions on Informa-
tion Theory, 24(3):384�386, 1978. http://authors.library.caltech.edu/5607/1/

BERieeetit78.pdf. 13

[8] Daniel J Bernstein. Grover vs. mceliece. In Post-Quantum Cryptography, pages 73�80.
Springer, 2010. https://cr.yp.to/codes/grovercode-20091123.pdf. 32, 47, 48

[9] Daniel J Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the
mceliece cryptosystem. In Post-Quantum Cryptography, pages 31�46. Springer, 2008.
https://cr.yp.to/codes/mceliece-20080807.pdf. 32, 48

[10] Anne Canteaut and Florent Chabaud. A new algorithm for �nding minimum weight
words in a linear code: application to mceliece cryptosystem and to narrow-sense bch
codes of length 511. IEEE Transactions on Information Theory, 44(1):367�378, 1998.
http://ieeexplore.ieee.org/document/651067/. 32, 48

[11] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a
sub-linear error weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th

49

https://arxiv.org/abs/2005.10741
http://authors.library.caltech.edu/5607/1/BERieeetit78.pdf
http://authors.library.caltech.edu/5607/1/BERieeetit78.pdf
https://cr.yp.to/codes/grovercode-20091123.pdf
https://cr.yp.to/codes/mceliece-20080807.pdf
http://ieeexplore.ieee.org/document/651067/

International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Pro-
ceedings, volume 9606 of Lecture Notes in Computer Science, pages 144�161. Springer,
2016. https://hal.inria.fr/hal-01244886. 32, 47, 48

[12] Ilya Dumer. On minimum distance decoding of linear codes. In Proc.
5th Joint Soviet-Swedish Int. Workshop Inform. Theory, pages 50�52, 1991.
https://www.researchgate.net/publication/296573348_On_minimum_distance_

decoding_of_linear_codes. 46

[13] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based
cryptosystems. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,
pages 88�105. Springer, Heidelberg, December 2009. 32, 48

[14] Philippe Gaborit. Shorter keys for code based cryptography. In Proceedings of the
2005 International Workshop on Coding and Cryptography (WCC 2005), pages 81�91,
2005. http://www.unilim.fr/pages_perso/philippe.gaborit/shortIC.ps. 12

[15] Philippe Gaborit and Marc Girault. Lightweight code-based identi�cation and sig-
nature. In 2007 IEEE International Symposium on Information Theory, pages 191�
195. IEEE, 2007. https://www.unilim.fr/pages_perso/philippe.gaborit/isit_

short_rev.pdf. 13

[16] Shuhong Gao and Todd Mateer. Additive fast fourier transforms over �nite �elds.
IEEE Transactions on Information Theory, 56(12):6265�6272, 2010. 25

[17] Danilo Gligoroski. Pqc forum, o�cial comment on bike submission. NIST
PQC forum, December 2017. https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/official-comments/

BIKE-official-comment.pdf. 14

[18] Sha� Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270�299, 1984. 15

[19] Qian Guo, Thomas Johansson, and Carl Löndahl. A new algorithm for solving ring-lpn
with a reducible polynomial. IEEE Transactions on Information Theory, 61(11):6204�
6212, 2015. https://arxiv.org/abs/1409.0472. 47

[20] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
fujisaki-okamoto transformation. In Theory of Cryptography Conference, pages 341�
371. Springer, 2017. 10, 16, 17, 42, 43, 48

[21] W Cary Hu�man and Vera Pless. Fundamentals of error-correcting
codes. Cambridge university press, 2010. https://www.amazon.fr/

Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707. 11

50

https://hal.inria.fr/hal-01244886
https://www.researchgate.net/publication/296573348_On_minimum_distance_decoding_of_linear_codes
https://www.researchgate.net/publication/296573348_On_minimum_distance_decoding_of_linear_codes
http://www.unilim.fr/pages_perso/philippe.gaborit/shortIC.ps
https://www.unilim.fr/pages_perso/philippe.gaborit/isit_short_rev.pdf
https://www.unilim.fr/pages_perso/philippe.gaborit/isit_short_rev.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/BIKE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/BIKE-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/BIKE-official-comment.pdf
https://arxiv.org/abs/1409.0472
https://www.amazon.fr/Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707
https://www.amazon.fr/Fundamentals-Error-Correcting-Codes-Cary-Huffman/dp/0521131707

[22] Shu Lin and Daniel J Costello. Error control coding, volume 2. Prentice Hall Englewood
Cli�s, 2004. 22, 23, 24, 25

[23] Zhen Liu and Yanbin Pan. Pqc forum, o�cial comment on hqc submission. NIST
PQC forum, January 2018. https://csrc.nist.gov/CSRC/media/Projects/

Post-Quantum-Cryptography/documents/round-1/official-comments/

HQC-official-comment.pdf. 14

[24] Zhen Liu, Yanbin Pan, and Tianyuan Xie. Breaking the hardness assumption and
ind-cpa security of hqc submitted to nist pqc project. In International Conference on
Cryptology and Network Security, pages 344�356. Springer, 2018. 14

[25] Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. Squaring attacks on mceliece public-
key cryptosystems using quasi-cyclic codes of even dimension. Designs, Codes
and Cryptography, 80(2):359�377, 2016. https://link.springer.com/article/10.

1007/s10623-015-0099-x. 47

[26] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-
correcting codes, volume 16. Elsevier, 1977. 26

[27] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in Õ(20.054n). In Asiacrypt, volume 7073, pages 107�124. Springer, 2011. https:
//link.springer.com/chapter/10.1007/978-3-642-25385-0_6. 46, 48

[28] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In EUROCRYPT (1), pages 203�228, 2015. http:
//www.cits.rub.de/imperia/md/content/may/paper/codes.pdf. 46, 48

[29] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto. Mdpc-
mceliece: New mceliece variants from moderate density parity-check codes. In In-
formation Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages
2069�2073. IEEE, 2013. https://eprint.iacr.org/2012/409.pdf. 12

[30] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, 8(5):5�9, 1962. http://ieeexplore.ieee.org/document/

1057777/. 46

[31] Robin Leander Schröder, Stefan Gast, and Qian Guo. Divide and surrender: Exploiting
Variable Division Instruction Timing in HQC Key Recovery Attacks. Cryptology ePrint
Archive, Paper 2024/299, 2024. https://eprint.iacr.org/2024/299. 4

[32] Nicolas Sendrier. Decoding one out of many. In International Workshop on Post-
Quantum Cryptography, pages 51�67. Springer, 2011. https://eprint.iacr.org/

2011/367.pdf. 14, 47, 48

51

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/HQC-official-comment.pdf
https://link.springer.com/article/10.1007/s10623-015-0099-x
https://link.springer.com/article/10.1007/s10623-015-0099-x
https://link.springer.com/chapter/10.1007/978-3-642-25385-0_6
https://link.springer.com/chapter/10.1007/978-3-642-25385-0_6
http://www.cits.rub.de/imperia/md/content/may/paper/codes.pdf
http://www.cits.rub.de/imperia/md/content/may/paper/codes.pdf
https://eprint.iacr.org/2012/409.pdf
http://ieeexplore.ieee.org/document/1057777/
http://ieeexplore.ieee.org/document/1057777/
https://eprint.iacr.org/2024/299
https://eprint.iacr.org/2011/367.pdf
https://eprint.iacr.org/2011/367.pdf

[33] Nicolas Sendrier. Secure Sampling of Constant Weight Words � Application to BIKE.
Cryptology ePrint Archive, Report 2021/1631, 2021. https://eprint.iacr.org/

2021/1631. 32, 44, 45

[34] Victor Shoup. NTL: A library for doing number theory. 2001. http://www.shoup.

net/ntl. 34

[35] Jacques Stern. A method for �nding codewords of small weight. In International
Colloquium on Coding Theory and Applications, pages 106�113. Springer, 1988. https:
//link.springer.com/chapter/10.1007/BFb0019850. 46

52

https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631
http://www.shoup.net/ntl
http://www.shoup.net/ntl
https://link.springer.com/chapter/10.1007/BFb0019850
https://link.springer.com/chapter/10.1007/BFb0019850

	History of updates on HQC
	Updates for February 19, 2025
	Updates for October 30, 2024
	Updates for February the 23rd 2024
	Updates for April the 30th 2023
	Updates for October the 1st 2022
	Updates for June the 6th 2021
	Updates for October the 1st 2020
	Updates for May the 4th 2020
	Modifications between Round 1 and Round 2

	Specifications
	Preliminaries
	General definitions
	Difficult problems for cryptography

	Encryption and security
	Presentation of the scheme
	Public key encryption version (HQC.PKE)
	A Key Encapsulation Mechanism (HQC.KEM)

	Analysis of the error vector distribution for Hamming distance
	Decoding with concatenated Reed-Muller and Reed-Solomon codes
	Definitions
	Reed-Solomon codes
	Encoding shortened Reed-Solomon codes
	Decoding shortened Reed-Solomon codes
	Duplicated Reed-Muller codes
	Encoding Duplicated Reed-Muller codes
	Decoding Duplicated Reed-Muller codes
	Decryption failure rate analysis
	Simulation results

	Representation of objects
	Keys and ciphertext representation
	Randomness and vector generation
	Sampling order for key generation and encryption
	The functions G and K

	Parameters
	Concatenated codes

	Performance Analysis
	Reference implementation
	Optimized constant-time implementation
	Hardware Implementation

	Known Answer Test Values
	Security
	IND-CPA security
	IND-CCA2 security
	HQC.PKE correction and DFR
	A CCA proof for HQC

	Security proof with non uniform randomness generation
	Arguments related to the security reduction
	Arguments related to the public key generation

	Known Attacks
	Advantages and Limitations
	Advantages
	Limitations

	References

