HQC: Hamming Quasi-Cyclic

An IND-CCA2 Code-based Public Key Encryption Scheme

April the 13th, 2018 NIST 1ST PQC STANDARDIZATION CONFERENCE Fort Lauderdale https://pqc-hqc.org

C. Aguilar Melchor ISAE, Supaéro Toulouse N. Aragon University of Limoges S. Bettaieb Worldline L. Bidoux Worldline O. Blazv University of Limoges **INSA-CVL** Bourges L-C. Deneuville University of Limoges P. Gaborit University of Limoges F Persichetti Florida Atlantic University G. Zémor IMB. University of Bordeaux 1 HQC Classification, design rationale

2 Scheme Presentation

3 Parameters

Advantages and limitations

1 HQC Classification, design rationale

2 Scheme Presentation

3 Parameters

Advantages and limitations

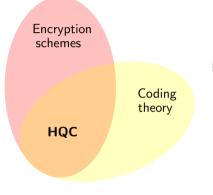
HQC Classification / Design Rationale

important leatures

- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:
 - Decoding random quasi-cyclic codes
- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate

HQC

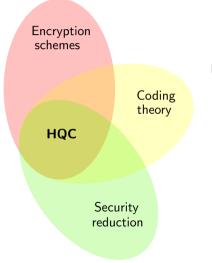
HQC Classification / Design Rationale


Encryption schemes

HQC

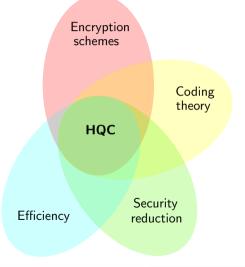
Important features:

- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:
 - Decoding random quasi-cyclic codes
- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate


HQC Classification / Design Rationale

Important features:

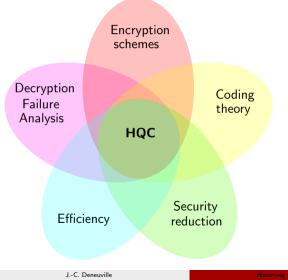
- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:
 - Decoding random quasi-cyclic codes
- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate


HQC Classification / Design Rationale

Important features

- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:
 - Decoding random quasi-cyclic codes
- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate

HQC Classification / Design Rationale

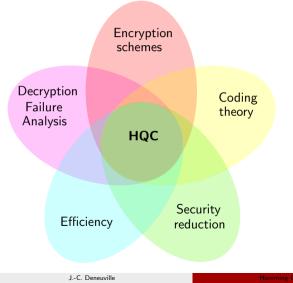


Important features

- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:
 - Decoding random quasi-cyclic codes
- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate

Parameter

HQC Classification / Design Rationale

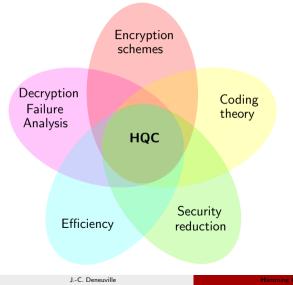


Important features:

- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:

- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate

HQC Classification / Design Rationale

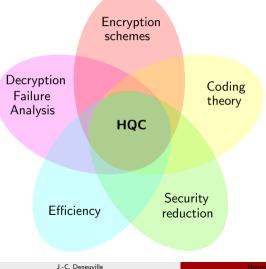

Important features:

- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:

- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate

Parameter

HQC Classification / Design Rationale

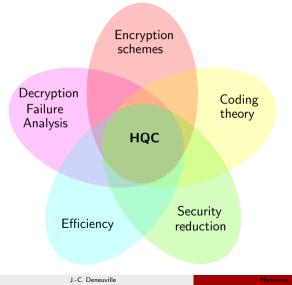


Important features:

- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:

- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate

HQC Classification / Design Rationale



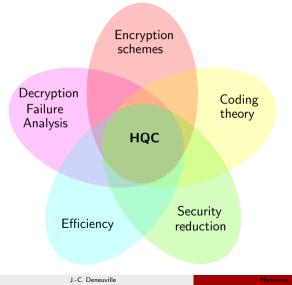
Important features:

- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:

- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate

HQC Classification / Design Rationale

Important features:


- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:

Decoding random quasi-cyclic codes

- No hidden trap in the code
- Efficient decoding (BCH + repetition code)

• Accurate failure rate

HQC Classification / Design Rationale

Important features:

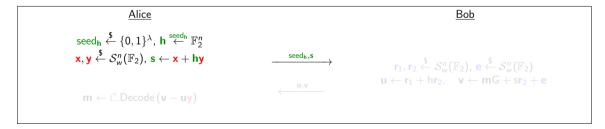
- IND-CPA code-based PKE
- Reduction to a well-known and difficult problem:

- No hidden trap in the code
- Efficient decoding (BCH + repetition code)
- Accurate failure rate

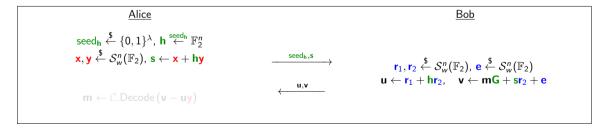
Outline

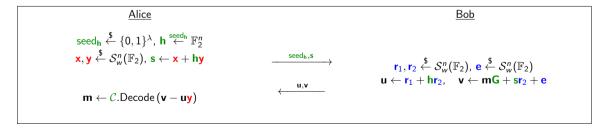
I HQC Classification, design rationale

2 Scheme Presentation


B) Parameters

Advantages and limitations


- Notation: Secret data Public data One-time Randomness
- $\bullet~$ G is the generator matrix of some public code ${\cal C}$
- $\mathcal{S}_w^n(\mathbb{F}_2) = \{\mathbf{x} \in \mathbb{F}_2^n \text{ such that } \omega(\mathbf{x}) = w\}$


- Notation: Secret data Public data One-time Randomness
- $\bullet~$ G is the generator matrix of some public code ${\cal C}$
- $\mathcal{S}_w^n(\mathbb{F}_2) = \{\mathbf{x} \in \mathbb{F}_2^n \text{ such that } \omega(\mathbf{x}) = w\}$

- Notation: Secret data Public data One-time Randomness
- $\bullet~$ G is the generator matrix of some public code ${\cal C}$
- $\mathcal{S}_w^n(\mathbb{F}_2) = \{\mathbf{x} \in \mathbb{F}_2^n \text{ such that } \omega(\mathbf{x}) = w\}$

- Notation: Secret data Public data One-time Randomness
- $\bullet~$ G is the generator matrix of some public code ${\cal C}$
- $\mathcal{S}_w^n(\mathbb{F}_2) = \{\mathbf{x} \in \mathbb{F}_2^n \text{ such that } \omega(\mathbf{x}) = w\}$

HQC is a generic framework to build efficient and secure code-based cryptosystems

Proposed instantiation:

- BCH codes tensored with repetition codes
 - Efficient decoding
 - Accurate DFR estimates

Time in ms ntel[®] Core[™] i7-4770 CPU @ 3.4GH

(Number of cycles available in supporting documentation)

Theorem

HQC is IND-CPA under 2-DQCSD and 3-DQCSD.

2-Decisional Quasi-Cyclic Syndrome Decoding and 3-DQCSD Problems

Instance: $\mathbf{h}, \mathbf{s} \in \mathbb{F}_2^n$

Decide:
$$\exists ?(\mathsf{x},\mathsf{y}) \in \mathcal{S}^n_w (\mathbb{F}_2)$$
 s.t. $\mathsf{s} = \begin{pmatrix} \mathsf{I}_n & \mathsf{h} \end{pmatrix} \begin{pmatrix} \mathsf{x} \\ \mathsf{y} \end{pmatrix}$

Decide:
$$\exists ?(\mathbf{r}_1, \mathbf{r}_2, \mathbf{e}) \in \mathcal{S}_w^n(\mathbb{F}_2) \text{ s.t. } \begin{pmatrix} \mathbf{I}_n & \mathbf{0} & \mathbf{h} \\ \mathbf{0} & \mathbf{I}_n & \mathbf{s} \end{pmatrix}$$

HQC is a generic framework to build efficient and secure code-based cryptosystems

Proposed instantiation:

- BCH codes tensored with repetition codes
 - Efficient decoding
 - Accurate DFR estimates

Time in ms Intel[®] CoreTM i7-4770 CPU @ 3.4GHz

Instance	KeyGen	Encaps	Decaps
Strength 1	0.17-0.19	0.36-0.40	0.57-0.63
Strength 3	0.37-0.43	0.77-0.89	1.13-1.28
Strength 5	0.65-0.82	1.38-1.76	1.96-2.50

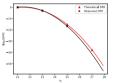
(Number of cycles available in supporting documentation)

Theorem

HQC is IND-CPA under 2-DQCSD and 3-DQCSD.

2-Decisional Quasi-Cyclic Syndrome Decoding and 3-DQCSD Problems

Instance: $\mathbf{h}, \mathbf{s} \in \mathbb{F}_2^n$


Decide:
$$\exists ?(\mathsf{x},\mathsf{y}) \in \mathcal{S}_w^n (\mathbb{F}_2)$$
 s.t. $\mathsf{s} = \begin{pmatrix} \mathsf{I}_n & \mathsf{h} \end{pmatrix} \begin{pmatrix} \mathsf{x} \\ \mathsf{y} \end{pmatrix}$

Decide:
$$\exists ?(\mathbf{r}_1, \mathbf{r}_2, \mathbf{e}) \in \mathcal{S}_w^n(\mathbb{F}_2) \text{ s.t. } \begin{pmatrix} \mathbf{I}_n & \mathbf{0} & \mathbf{h} \\ \mathbf{0} & \mathbf{I}_n & \mathbf{s} \end{pmatrix}$$

HQC is a generic framework to build efficient and secure code-based cryptosystems

- Proposed instantiation:
 - BCH codes tensored with repetition codes
 - Efficient decoding
 - Accurate DFR estimates

Time in ms Intel [®] Core [™] i7-4770 CPU @ 3.4GHz			
Instance	KeyGen	Encaps	Decaps
Strength 1	0.17-0.19	0.36-0.40	0.57-0.63
Strength 3	0.37-0.43	0.77-0.89	1.13-1.28
Strength 5	0.65-0.82	1.38-1.76	1.96-2.50

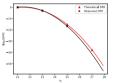
(Number of cycles available in supporting documentation)

Theorem

```
HQC is IND-CPA under 2-DQCSD and 3-DQCSD.
```

2-Decisional Quasi-Cyclic Syndrome Decoding and 3-DQCSD Problems

Instance: $\mathbf{h}, \mathbf{s} \in \mathbb{F}_2^n$


Decide:
$$\exists ?(\mathsf{x},\mathsf{y}) \in \mathcal{S}_w^n (\mathbb{F}_2)$$
 s.t. $\mathsf{s} = \begin{pmatrix} \mathsf{I}_n & \mathsf{h} \end{pmatrix} \begin{pmatrix} \mathsf{x} \\ \mathsf{y} \end{pmatrix}$

Decide:
$$\exists ?(\mathbf{r}_1, \mathbf{r}_2, \mathbf{e}) \in \mathcal{S}_w^n(\mathbb{F}_2) \text{ s.t. } \begin{pmatrix} \mathbf{I}_n & \mathbf{0} & \mathbf{h} \\ \mathbf{0} & \mathbf{I}_n & \mathbf{s} \end{pmatrix}$$

HQC is a generic framework to build efficient and secure code-based cryptosystems

- Proposed instantiation:
 - BCH codes tensored with repetition codes
 - Efficient decoding
 - Accurate DFR estimates

Time in ms Intel [®] Core [™] i7-4770 CPU @ 3.4GHz			
Instance	KeyGen	Encaps	Decaps
Strength 1	0.17-0.19	0.36-0.40	0.57-0.63
Strength 3	0.37-0.43	0.77-0.89	1.13-1.28
Strength 5	0.65-0.82	1.38-1.76	1.96-2.50

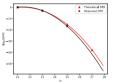
(Number of cycles available in supporting documentation)

Theorem

HQC is IND-CPA under 2-DQCSD and 3-DQCSD.

2-Decisional Quasi-Cyclic Syndrome Decoding and 3-DQCSD Problems

Decide:
$$\exists ? (\mathsf{x}, \mathsf{y}) \in \mathcal{S}_w^n \left(\mathbb{F}_2 \right)$$
 s.t. $\mathsf{s} = ig(\mathsf{I}_n \quad \mathsf{h} ig) ig(\overset{\mathsf{x}}{\mathsf{y}}$


Instance:
$$\mathbf{h}, \mathbf{s} \in \mathbb{F}_2^n$$

Decide:
$$\exists$$
?($\mathbf{r}_1, \mathbf{r}_2, \mathbf{e}$) $\in S_w^n(\mathbb{F}_2)$ s.t. $\begin{pmatrix} \mathbf{I}_n & \mathbf{0} & \mathbf{h} \\ \mathbf{0} & \mathbf{I}_n & \mathbf{s} \end{pmatrix}$

HQC is a generic framework to build efficient and secure code-based cryptosystems

- Proposed instantiation:
 - BCH codes tensored with repetition codes
 - Efficient decoding
 - Accurate DFR estimates

Time in ms Intel [®] Core [™] i7-4770 CPU @ 3.4GHz			
Instance	KeyGen	Encaps	Decaps
Strength 1	0.17-0.19	0.36-0.40	0.57-0.63
Strength 3	0.37-0.43	0.77-0.89	1.13-1.28
Strength 5	0.65-0.82	1.38-1.76	1.96-2.50

(Number of cycles available in supporting documentation)

Theorem

HQC is IND-CPA under 2-DQCSD and 3-DQCSD.

2-Decisional Quasi-Cyclic Syndrome Decoding and 3-DQCSD Problems

Instance:
$$\mathbf{h}, \mathbf{s} \in \mathbb{F}_2^n$$

Decide: $\exists ?(\mathbf{x}, \mathbf{y}) \in \mathcal{S}_w^n (\mathbb{F}_2)$ s.t. $\mathbf{s} = \begin{pmatrix} \mathbf{I}_n & \mathbf{h} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$

$$\begin{array}{ll} \text{Instance:} \ \textbf{h},\textbf{s} \in \mathbb{F}_2^n \\ \text{Decide:} \ \exists ?(\textbf{r}_1,\textbf{r}_2,\textbf{e}) \in \mathcal{S}_w^n \left(\mathbb{F}_2\right) \ \text{s.t.} \ \begin{pmatrix} \textbf{I}_n & \textbf{0} & \textbf{h} \\ \textbf{0} & \textbf{I}_n & \textbf{s} \end{pmatrix} \begin{pmatrix} \textbf{r}_1 \\ \textbf{e} \\ \textbf{r}_2 \end{pmatrix} \end{array}$$

Outline

I HQC Classification, design rationale

2 Scheme Presentation

3 Parameters

Advantages and limitations

Parameters

All sizes in bytes

NIST Cat.	Instance	pk size sizeof(h , s) (sizeof(seed _h , s))	sk size sizeof(x , y) (sizeof(seed _{sk}))	ct size	DFR
1	Basic-I	5,558 (2,819)	252 (40)	5,622	2 ⁻⁶⁴
L	Basic-III	6,170 (3,125)	252 (40)	6,234	2^{-128}
3	Advanced-I	10,150 (5,115)	404 (40)	10,214	2 ⁻⁶⁴
5	Advanced-III	11,688 (5,884)	404 (40)	11,752	2^{-192}
5	Paranoiac-I	14,754 (7,417)	532 (40)	14,818	2 ⁻⁶⁴
5	Paranoiac-IV	17,714 (8,897)	566 (40)	17,778	2^{-256}

Best known classical attack: [CS16] \rightarrow work factor $2^{-2w \log(1-\frac{k}{n})(1+o(1))}$ (Prange [Pra62]) Best known quantum attack: ISD with [Gro96] \rightarrow work factor $\sqrt{\binom{n}{2w}/\binom{n-k}{2w}}$ 1 HQC Classification, design rationale

2 Scheme Presentation

B) Parameters

Advantages and limitations

Paramete

Pros and cons

Limitations:

- Non-zero decryption failure rate
- Larger ciphertexts than BIKE-1 and BIKE-3 KEMs ($\approx \times 2$)
- Larger public key than BIKE KEM $(\approx \times 2)$, but still reasonable

Advantages:

- Security reduction to decoding random quasi-cyclic codes
- Simple and efficient decoding (BCH + repetition code)
- No more hidden trap
- Makes use of cyclicity for efficiency
- Well-understood, theoretically bounded, and fast decreasing DFR
- Attacks on Hamming metric are well understood (50+ years)
- Easy to understand

Pros and cons

Limitations:

- Non-zero decryption failure rate
- Larger ciphertexts than BIKE-1 and BIKE-3 KEMs ($\approx \times 2$)
- Larger public key than BIKE KEM ($\approx \times 2$), but still reasonable

Advantages:

- Security reduction to decoding random quasi-cyclic codes
- Simple and efficient decoding (BCH + repetition code)
- No more hidden trap
- Makes use of cyclicity for efficiency
- Well-understood, theoretically bounded, and fast decreasing DFR
- Attacks on Hamming metric are well understood (50+ years)
- Easy to understand

Thank you for your attention.

HQC official website and updates: https://pqc-hqc.org/

Thank you for your attention.

Carlos Aguilar, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Efficient encryption from random quasi-cyclic codes. *IEEE Transactions on Information Theory*, 2018.

Michael Alekhnovich.

More on average case vs approximation complexity. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 298–307, 2003.

Rodolfo Canto Torres and Nicolas Sendrier.

Analysis of information set decoding for a sub-linear error weight.

In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings, volume 9006 of Lecture Notes in Computer Science, pages 144–161. Springer, 2016.

Qian Guo, Thomas Johansson, and Paul Stankovski.

A key recovery attack on mdpc with cca security using decoding errors.

In 22nd Annual International Conference on the Theory and Applications of Cryptology and Information Security (ASIACRYPT), 2016, 2016.

Lov K Grover

A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219. ACM, 1996.

Dennis Hofheinz, Kathrin Hövelmanns, and Eike

Kiltz.

A modular analysis of the fujisaki-okamoto transformation.

Cryptology ePrint Archive, Report 2017/604, 2017. http://eprint.iacr.org/2017/604.

Eugene Prange.

The use of information sets in decoding cyclic codes. *IRE Transactions on Information Theory*, 8(5):5–9, 1962.

HQC official website and updates: https://pqc-hqc.org/